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Abstract
We investigate the emergence of Deep Learning as a technoscientific field, emphasizing the role
of open labeled datasets. Through qualitative and quantitative analyses, we evaluate the role of
datasets like CIFAR-10 in advancing computer vision and object recognition, which are central
to the Deep Learning revolution. Our findings highlight CIFAR-10’s crucial role and enduring
influence on the field, as well as its importance in teaching ML techniques. Results also indicate
that dataset characteristics such as size, number of instances, and number of categories, were
key factors. Econometric analysis confirms that CIFAR-10, a small-but-sufficiently-large open
dataset, played a significant and lasting role in technological advancements and had a major
function in the development of the early scientific literature as shown by citation metrics.
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1 Introduction

Artificial Intelligence (AI) technologies promise to revolutionize the knowledge production process.
At the core of one of the most important approaches to the AI revolution are machine learning (ML)
algorithms: computer programs that improve performance as they are exposed to an increasing
amount of data. An example of disruptive technology based on ML is AlphaFold – an AI algorithm
developed by Google’s offshoot DeepMind first released in 2018, which solved one of the most
challenging problems in the field of biology: the prediction of protein’s structures based on amino-
acid sequences (Jumper et al., 2021; Callaway, 2020). A more recent example is ChatGPT, a Large
Language Model (LLM) developed by OpenAI. It is based on the GPT (Generative Pre-training
Transformer) architecture and is trained to generate human-like text. ChatGPT and other LLMs
available in the early 2020s have been identified as having impact in diverse areas that go from
medicine (Jeblick et al., 2022) to journalism (Pavlik, 2023) and their impact on science is heavily
discussed (Stokel-Walker and Van Noorden, 2023).

These breakthroughs and many others are underpinned by developments in Deep Learning (DL),
a subset of ML models that relies on neural networks and requires vast amounts of data to be trained
(LeCun et al., 2015). Due to the extremely promising results in wide areas of application, DL has
been regarded as a new method of invention and potentially a general-purpose technology in which
the next industrial revolution maybe based (Crafts, 2021). Although a growing literature has studied
the impact of DL on the knowledge production process (Bianchini et al., 2022; Klinger et al., 2021),
little attention has been given to its inception and to the specific role played by Open Labelled
Datasets (OLDs).

In this paper we analyze the emergence of DL as a technoscientific field, that is, a domain in
the middle of scientific enquiry and technical problem-solving (Kastenhofer and Molyneux-Hodgson,
2021). More specifically, we examine how OLDs have contributed to the growth and consolidation
of DL, focusing on their distinct characteristics. Within this perspective, we regard OLDs as
technological artifacts that allow the development of the field. We draw on the literature discussing
the emergence of new scientific disciplines to provide a picture of the development of DL as the
dominant approach in ML & AI, and the role of OLDs in that process. We perform an analysis
of the technological and scientific use of OLDs that includes both qualitative and quantitative
elements. We devote particular attention to the role played by CIFAR-10, the most used dataset in
the ML literature indexed at the Papers with Code website1. We carried out a set of semi-structured
interviews with relevant actors and we implemented a survey of academics and ML practitioners
who have used CIFAR-10 in their work; on the basis of the qualitative evidence we modeled the
use OLDs in technological and scientific development proxied by patent (technology) and scholarly
(science) citations in the period 2000-2022.

Compute, data and algorithmic advances are the needed ingredients of the DL revolution (Koch
and Peterson, 2024; Sevilla et al., 2022). In early 2010s increased computing power availability

1See Section 4.2 for details.
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(see the arrival of 2D and 3D GPUs) was in line with the doubling approximately every 6 months
of computing requirements by new DL algorithms running on OLDs (Sevilla et al., 2022). The
main tenet of this paper is that once the bottleneck of computer power was not any longer a
major problem, the potential of neural network approaches to AI - theoretically developed over
the last fifty years of the 20th century - could be realized and further advanced through the use
of OLDs. Given that AI as a field shifted towards an evaluation system based on benchmarking -
quantification of progress based on predictive accuracy on example datasets (Koch and Peterson,
2024), OLDs became fundamental to develop better algorithms/architectures. Models (algorithms
and architectures) were developed to solve specific tasks using specific OLDs; they would not exist
without the dataset, as the specific OLD allowed the development of more refined and accurate
models. OLDs that required less computing power, such as CIFAR-10, a small-but-sufficiently-
large dataset, enabled the testing and refinement of new model architectures like AlexNet, which
succeeded in solving tasks using huge and complex datasets that were previously unattainable with
the same computational resources. OLDs should be considered as the necessary testing tool that
had to be developed to allow progress in the DL modelling.

The qualitative evidence we put together support the view that OLDs, and CIFAR-10 in par-
ticular, were fundamental for the technological and scientific developments which lead to the DL
revolution and still shape the trajectory of the field. We trace the creation of the CIFAR-10 to the
CIFAR NCAP Summer School in 2008, where the labelling of the dataset was conducted mostly
by graduate students over the supervision of Geoffrey Hinton, a prominent scholar in the field, and
two of his students, Alex Krizhevsky and Vinod Nair. We also learned through our interviews that
CIFAR-10 became a benchmark due to its technical specifications, namely the nature of the images,
their size, the number of samples and categories. The survey confirms the insights of the interviews
and highlights that CIFAR-10 is used extensively in the training of computer scientists working with
ML. Many researchers not only teach courses using CIFAR-10, but also were themselves exposed
to the dataset while following graduate programs. This finding highlight teaching as an important
channel through which CIFAR-10 impacted the field of DL.

By examining data from 28,393 conference proceedings and journal publications in the ML
literature that utilized OLDs to train models between 2010 and 2022, we assess the technological
and scientific relevance of these papers based on their citations in patents and academic literature.
Our econometric analysis confirms the significant role of CIFAR-10 in the technological and scientific
development of DL. Specifically, we find that papers using CIFAR-10 — a small but sufficiently large
dataset — had a substantial early impact on the scientific literature, as evidenced by high academic
citation counts, and continue to be relevant today, as shown by their higher patent citation counts.
This indicates that the technical characteristics that initially contributed to the dataset’s success
continue to drive research and technological advancements in DL, particularly in computer vision
and image recognition. We compared the CIFAR-10 and ImageNet datasets, demonstrating that
CIFAR-10 has been and continues to be significant for technological developments, while ImageNet
keep on playing a prominent role in scientific developments within the DL literature.
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The rest of the paper proceeds as follows. In the next section, we present the conceptual
framework used followed by the historical and institutional background of DL research and OLDs
in Section 3. Section 4 describes the empirical methodology, data collection, the construction of
the sample and presents descriptive statistics. Section 5 reports and discusses the results of the
analysis. Section 6 concludes the paper.

2 Conceptual framework

Since Kunh’s The structure of scientific revolutions (Kuhn, 1970), the sociology of science - and more
recently the economics of science - has been interested in studying the conditions of emergence of
new disciplines or subdisciplines within the scientific endeavor. The most important idea presented
by Kuhn is how scientific knowledge does not always grow in a stable and incremental fashion, but
it can also go through short periods of big changes, in which new paradigms emerge and consolidate.

In this paper we explore in particular the question of how OLDs contributed to the process of
making DL into the dominant paradigm within AI (Kersting, 2018; Chah, 2019; Schmidhuber, 2015),
after being dismissed for a long time in favor of symbolic AI (Waldrop, 2019; Weber and Prietl,
2021). To do so, we mostly rely the theoretical contributions of Frickel and Gross (2005). They ar-
gued that there are parallelisms between social movements and what they call Scientific/Intellectual
Movements (SIMs). Just as social movements, SIMs involve the pursue of common projects and
objectives by a group of people that must rely upon repertoires of collective action to face the
resistance from others in the scientific or intellectual community. Since SIMs resemble social move-
ments that emerge to challenge some previous paradigm and therefore inevitably face some level
of resistance, they also must deal with the problems of collective action: “The emergence of new
social forms in science and academe invariably requires some level of spatial, temporal, and social
coordination.” (Frickel and Gross, 2005).

Following Kuhn (1970), we also consider that SIMs emerge at times of scientific crisis, when re-
search anomalies linked to old paradigms have accumulated beyond a tolerable threshold. However,
the contempt towards the dominant paradigm is only a prerequisite and never enough to generate
a SIM. For an intellectual movement of that sort to be successful, the leaders must articulate a a
distinctive research program program. Doing so requires certain structural conditions, especially
the access to resources, such as employments for the members of the SIM, access to laboratories,
academic positions that allow to publish their results, and organizational resources that allow the
members of the SIM to come together and create epistemic cultures, and discuss repertoires of
thought and action that allow them to advance their intellectual agenda.

After the initial conditions are given, SIMs also have the need (like social movements) to recruit
new members, to do so a locus of exchange and discussion where novel research is presented to old
members and potential new recruits become a major condition for the success of the movement.
This scenarios of micromobilization can take the form of seminars, conferences, PhD positions, or
summer schools. SIM must find ways to validate itself both internally, building a narrative of its
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history and identity, and externally, against opponents (Frickel and Gross, 2005).
In the case in hand, in the 80s and 90s, there was a group of scientists, in different universities

around the United States, Europe and Canada who were not satisfied with the direction of the
research programs in AI, based mostly on symbolic systems. Among them, Geoffrey Hinton, a
University of Toronto professor, who was convinced that DL “had to be the future of AI” (Goldman,
2022). He and some of his colleagues – particularly Yan LeCun and Yoshua Bengio – were at the
forefront of the DL revolution. Waldrop (2019) describes what happens during this contentious
period of the 80s and early 90s:

Today’s deep-learning revolution has its roots in the “brain wars” of the 1980s when advocates
of two different approaches to AI were talking right past each other. On one side was an ap-
proach—now called “good old-fashioned AI”—that had dominated the field since the 1950s. Also
known as symbolic AI, it used mathematical symbols to represent objects and the relationship
between objects. [. . . ] But by the 1980s, it was also becoming clear that symbolic AI was
impressively bad at dealing with the fluidity of symbols, concepts, and reasoning in real life.
In response to these shortcomings, rebel researchers began advocating for artificial neural net-
works, or connectionist AI, the precursors of today’s deep-learning systems (Waldrop, 2019, p.
1075).

The Canadian Institute of Advanced Research (CIFAR), a research funding organization based
in Toronto that finances basic research with a high-risk, high-reward philosophy was, since its
foundation in the 1980s, consistently interested in the advancement of AI and was at the forefront
of the upsurge of ML technologies (Chah, 2019). CIFAR became the institutional setting on which
those “rebel researchers” were able to join forces and form their own epistemic culture. CIFAR
provided access to symbolic resources in the form of positions - like fellowships - for some of them,
but also material resources in the form of funding (not in a significant amount) for conferences,
meetings and summer schools, all of them part of the micromobilization scenarios needed to recruit
new members, discuss novel ideas, and in general advance their agenda.

2.1 Open Science

In a series of works in the early 2000s, Paul A. David elaborated on the concept of open science
contrasting it with the increasing reliance on Intellectual Property Rights (IPRs) in the production
of science (David, 2003; David, 2004; David, 2005). Open science in its original conception, takes a
descriptive sense, referring to a new paradigm born:

with Renaissance mathematics, the cultural ethos and social organization of western European
scientific activities during the late sixteenth and seventeenth centuries [. . . ] –departing from the
previously dominant regime of secrecy in the pursuit of ‘Nature’s secrets’ (David, 1998, p. 15).

This new paradigm shaped the organization of the scientific endeavor in the West, including the
imperatives of public disclosure of discoveries, and the methods that lead to those discoveries. This
openness was supported by a public (open) system of Universities and research communities, and a
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series of norms, including communalism, universalism, desinterestedness, originality and skepticism
(Merton, 1973), that created a reward system based on collegiate reputation that was achieved by
validated claims to priority in discovery or invention (David, 2003).

Since its inception, the concept positions itself as opposed to a “closed” science based on IPRs like
patents and copyrigts, that jeopardize the traditional ethos of open science. Scholars like Dasgupta &
David (Partha and David, 1994; David, 2004) have warned about the social and economic problems
that might arise from the enclosure of scientific knowledge within the framework of IPRs. Among
others potential hazards, they mention a suboptimal level of production of basic science, which have
the greatest spillovers; and scientists getting more and more engaged in duplicitous work, unable to
access a big part of the stock of codified knowledge in the form of patents created by a culture of
“intellectual capitalism” (David, 2004).

More recently, the advent of the digital technologies, and in particular the internet, has given
rise to a slightly different conceptualization of open science that lies “between the age-old tradition
of openness in science and the tools of information and communications technologies (ICTs) that
have reshaped the scientific enterprise” (OECD, 2015). In this conception, open science is (loosely)
defined as “efforts by researchers, governments, research funding agencies or the scientific community
itself to make the primary outputs of publicly funded research results – publications and the research
data – publicly accessible in digital format with no or minimal restriction as a means for accelerating
research; these efforts are in the interest of enhancing transparency and collaboration, and fostering
innovation” (OECD, 2015). In this conception, open science is part of an ‘open ecosystem’ that
encompasses open access journals, open data, open software, open collaboration, open peer review,
among others.

One element of the open science ecosystem is particularly relevant for this work is open data.
The European Commission provides a definition, stating that “Open Data is data that is made
available by (public) organisations, businesses and individuals for anyone to access, use and share”
(European Commission, 2018). Access to data can have many advantages or purposes. Data (for
example from public records) can be used for original research; for reproducing and validating (or
not) existing knowledge; or to explore new research avenues.

Certainly data has become relevant for many areas of scientific inquiry; but for DL in particular,
data is a conditio sine qua non for its very existence, since the neural networks on which it is built
rely on the availability of large amounts of data. Open data, built collaboratively, clearly labeled
and free to access on the Internet was key to the emergence and eventual dominance of DL within
AI (Martens, 2018).

2.2 The GPU Revolution

To achieve the status of a dominant paradigm within the machine learning (ML) literature, deep
learning (DL) had to overcome a series of systemic bottlenecks that impeded its development. Al-
though the theoretical basis for AI, based on ML algorithms and convolutional neural networks, was
established in the 1980s, the first significant bottleneck from the 1990s onwards was the availability
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of large amounts of training data necessary to “feed” the DL models.
Besides the availability of training data, the development of DL depended also on the increase

of computing power. Because of the enormous amounts of data to be processed and the increasing
complexity of the algorithms used to analyze that data, computing capacity became a bottleneck for
the development of DL until the second decade of the twenty-first century. Despite the excitement
with neural networks in the 80s and 90s “computers were not powerful enough to allow this approach
to work on anything but small, almost toy-sized problems” (Dean, 2020).

The paradigm of general-purpose computing on GPU cards, originally used for gaming, “because
of GPU cards’ high floating point performance relative to CPUs, started to allow neural networks to
show interesting results on difficult problems of real consequence.” (Dean, 2020). In particular, from
mid 90s the performance of GPUs increase significantly with 2D and 3D acceleration on the same
unit. The coming on the market of Nvidia GeForce 256 in 1999 is usually considered the turning
point of the industry. The consequence of those technological advances was that “computers finally
started to become powerful enough to train large neural networks on realistic, real-world problems”
(Dean, 2020).

By 2009 when CIFAR-10 was launched, the technological conditions for its use and exploitation
were mature. CIFAR-10 became a dataset that could be manipulated on personal computers (see
Table 1 below for a comparison of computing requirements of mostly used OLDs), and used as a
toy-dataset to train and improve algorithms that could later be used on more complex datasets such
as ImageNet.

2.3 AI as a Technoscience

Different from other intellectual movements, AI in general and DL in particular can be better
understood as a technoscience, located in the intersection between traditional scientific research
and technological applications (Raimbault and Joly, 2021). Different from pure sciences, the quest
of technoscience is not only motivated by a search for new knowledge in an abstract way, but to
the solution of practical problems. In fact, “technoscience is ‘face to face’ with the things. It is less
interested in what they are or what regular behaviors they are naturally disposed to exhibit, and
more interested in what they can become or what they might offer” (Bensaude-Vincent et al., 2011).
Usually, in the policy arena, technosciences are often referred to as Pasteur Sciences (Stokes, 2011).

In the case of DL, the practical applications go from medical image analysis, language translation,
object detection for autonomous vehicles, content filter, and many others (Cfr. Bengio et al., 2021).
It is no surprise then that technosciences develop strong links with industry, as shown by the fact
that most of the academics that ignited the DL revolution ended up joining the industry (Geoffrey
Hinton in Google; Yan LeCun in Facebook, and Yoshua Bengio in his own venture, Element AI).

The theoretical implications of considering AI as a technoscience and DL as a paradigm within
it, mean a deviation from a traditional analysis of a scientific discipline. For example, even if
traditional criteria, like the priority of discovery (Merton, 1957) still apply, it does in a different
way. More than publications in academic journals, breakthroughs are shown through competitions,
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in which the new techniques (in this case the algorithms) are tested against a certain benchmark to
validate the real-world performance of the discovery. In other words, the understanding of causal
mechanisms in the aim of proving or disproving a certain theoretical perspective become secondary,
while practical (technological) results are of the utmost importance.

This is very clear in the case of DL. Bengio et al. (2021) highlight that “DL scored a dramatic
victory in the 2012 ImageNet competition, almost halving the error rate for recognizing a thousand
different classes of object in natural images”. Other authors like LeCun et al. (2015) and Schmid-
huber (2015), also underscore the performance of the algorithms in those competitions as the most
important milestones in the paradigm shift. 2012 became to be know as the year of the “DL revolu-
tion” The practical performance becomes then more relevant than the actual understanding of the
mechanism that drive those results. In fact, “once a DL system has been trained, it’s not always
clear how it’s making its decisions” (Waldrop, 2019). Articles in scientific journals play a role in
the development of this new technoscience but other forms of knowledge diffusion and creation of
reputation such as conference presentations, conference proceedings and patents are of similar or
higher importance (Franceschet, 2010; Meyer et al., 2009; Fortnow, 2009). For example, in the
full sample of 37,242 articles identified in this paper as composing the relevant literature in DL
for computer vision and image recognition around 55% were conference proceedings. Science and
technology are interlinked and publications and proceedings are cited more frequently and faster in
patents protecting downstream technological development. To try to capture developments in the
field we must therefore use both patents and publications because the latter would only provide a
limited representation of the evolution of the science.

3 Institutional background

3.1 Winning the brain wars: The emergence of DL as a dominant paradigm
within AI

DL is a subfield of ML that is inspired by the structure and function of the brain’s neural networks.
It involves training artificial neural networks, which are composed of layers of interconnected nodes
or “neurons” to learn from large amounts of data. These networks can be used to perform a wide
variety of tasks, such as image and speech recognition, natural language processing, and decision
making. DL is often used in combination with other techniques, such as reinforcement learning, to
solve complex problems (LeCun et al., 2015).

DL is a subset of ML, which in turn is defined as “concerned with the question of how to construct
computer programs that automatically improve with experience” (Mitchell, 1997). ML, on the other
hand, is one of the most important approaches of AI. AI, ML and DL are interrelated but differ
from each other. Chah (2019) makes the following distinction:

Although the three terms —AI, ML and DL— are intricately linked, nuanced differences in
their specific definitions can make the difference between whether the term is used precisely
or whether the actual operations on the ground are obfuscated. The dynamic definition of AI
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affects what state-of-the-art advances are considered as AI for a particular time and place. ML
is primarily concerned with training machines to learn from data, following closely the original
definition by Arthur Samuel in 1959. To implement the ever-changing state-of-the-art techniques
that exhibit AI capabilities, DL is one of the most popular sets of ML techniques in use today
Chah (2019, p. 3).

The concept of DL was coined in 2006 by Geoffrey Hinton and his colleagues (LeCun et al.,
2015; Chah, 2019). However, the concepts on which this technology is based, started to develop
long before with the work on artificial neural networks in the 1940s (Schmidhuber, 2015; Chah,
2019) that evolved in the 1980s into the covolutional neural network (Fukushima, 1980).

Despite being a growing field, DL was at the peripheries of AI for many decades. According to
Yan LeCun, one of the main proponents and intellectual architects of the DL revolution “In the late
1990s, neural nets and backpropagation were largely forsaken by the machine-learning community
and ignored by the computer-vision and speech-recognition communities” (LeCun et al., 2015). By
2006, a paper by Hinton et al. (2006) reignited the interest, by showing the possibility of using
DL to achieve state-of-the-art results (1.25 percent error rate) in recognizing handwritten digits.
In 2012, a DL algorithm developed by Krizhevsky et al. (2017) won the ImageNet classification
competition, one of the most challenging image recognition databases at the time. AlexNet, the
winning algorithm, became a milestone that positioned DL as the dominant paradigm within ML
and consequently within AI.

AlexNet was developed by Alex Krizhevsky in collaboration with Ilya Sutskever and Geoffrey
Hinton. Both Krizhevsky and Hinton were also behind the creation of CIFAR-10, which became the
basis for the development of the AlexNet algorithm (Fergus, 2022, Interview No. 2; Bengio, 2022,
Interview No. 5).

3.2 The development of Open Labeled Datasets and CIFAR-10

CIFAR support rational aimed to finance risky basic research with networking type of money and
provided the institutional space for alternative research approaches. In 2004, CIFAR supported a
diverse group of unorthodox scientists led by Geoffrey Hinton into pursuing an ambitious program
in AI called Neural Computation and Adaptive Perception Program (NCAP) (Silverman, 2022,
Interview No. 7; Brownell, 2016).

On his account of the beginning of the NCAP program, Prof. Silverman highlights how this
group of people were full of new ideas, but did not have the institutional spaces to present and
discuss them:

But when I’m trying to create a scenario, where, as they spoke, [. . . ] that they sort of, had
come together as a group, informally because they didn’t have anybody to talk to in their own
departments. There they were, they had their own disciplines, they made it into, they had faculty
appointments, they were achieving in their own departments, but basically, their interests had
taken them in a much broader, different way [to] understand how the brain processes information,
not really staying in a single lane, if you know what I mean. And so that, that, that was that
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resonated with me.“ He continues saying that they thought ”We’re smart, and nobody wants
us. Because we’re trying to work on this really tough problem. (Silverman, 2022, Interview No.
7).

CIFAR became then the institutional space that provided with basic resources for that group
of people to come together and start exploring their common interests. Geoffrey Hinton was joined
in his research effort by Yoshua Bengio, and Yann LeCun. Their work became a seminal piece in
the paradigm shift that saw DL become the dominant approach in AI. “Their work together led
to a number of advances, including a breakthrough AI technique called DL, which is now integral
to computer vision, speech recognition, natural language processing, and robotics” (Farrow, 2019).
Because of this work, they received the A.M. Turing Award, considered as the “Nobel Prize of
Computing”.

Open Labeled Datasets. Before 2009, the two main datasets used for computer vision and object
recognition tasks were CALTECH-101 and MNIST (Modified National Institute of Standards and
Technology database). CALTECH-101 is a dataset that contains pictures of objects belonging to 101
categories. It contains about 40 to 800 images per category, with most categories containing about
50 images. It was collected in September 2003 by Fei-Fei Li, Marco Andreetto, and Marc’Aurelio
Ranzato (Li et al., 2022). MNIST was one of the first annotated datasets used in ML models
and consists of large collection of images of handwritten digits taken from the CENSUS bureau,
it contains 60,000 black and white training images and 10,000 testing images, it was released by
AT&T Bell Labs in 1998 (Goltsev et al., 2004). The CIFAR team worked mostly with MNIST.

In 2006, Rob Fergus, Antonio Torralba and William T. Freeman released the “80 million tiny
images”, a new dataset that could overcome some of the limitations of the existing ones. They
automatically collected low-resolution images from different search engines (Altavista, Ask, Flickr,
Cydral, Google, Picsearch and Webshot) and loosely labeled with one of the 53,464 non-abstract
nouns in English, as listed in the Wordnet lexical database (Torralba et al., 2008). However, in the
original paper in which he introduces the CIFAR databases, Krizhevsky (2009) mentions that he is
trying to solve

A [. . . ] problematic aspect of the tiny images dataset is that there are no reliable class labels
which makes it hard to use for object recognition experiments. We created two sets of reliable
labels. [. . . ]. Using these labels, we show that object recognition is significantly improved by
pre-training a layer of features on a large set of unlabeled tiny images. (Krizhevsky, 2009, p. 1)

In 2008, Geoffrey Hinton, along with two of his students, Vinod Nair and Alex Krizhevsky, had
the idea to manually label a sub-set of the “80 million tiny images” (Fergus, 2022, Interview No.
2), to address one of the problems they encounter when using this large dataset for unsupervised
training. To label the images, they took advantage of the NCAP Summer School that took place
in August 2008. The students that participated occupied some of the time labeling the images
according to a protocol written by Alex Krizhevsky and Rob Fergus (Fergus, 2022, Interview No.
2). Rob Fergus account of the process is that
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the data [From the 80 million tiny images] need[ed] to be manually cleaned in order to make a
sort of good supervised training dataset. And Geoff wants you to do this. And so he organized
the CIFAR summer school, he got all the summer school students sitting down. So how did it
work? So I think Alex Krizhevsky and I wrote a labelling routine to actually, you know, have
labelling interface where all the students would sit down, and we will go through the images,
cleaning them up, and we decided that, Geoff decided he was going to pick, you know, these
10 Super categories, and then each one of which had subcategories that form the CIFAR 100.
(Fergus, 2022, Interview No. 2).

In that way, the CIFAR team created the CIFAR-10 dataset, which consists of 60,000 32x32
color images in 10 classes, with 6,000 images per class; and the CIFAR-100 is just like the CIFAR-10,
except it has 100 classes containing 600 images each. The datasets overcame some of the problems
encountered in older open datasets, while keeping an architecture similar to that of MNIST. These
two datasets were subsequently used to train computer vision algorithms through a procedure called
supervised learning. LeCun et al. (2015) explain supervised learning as follows:

Imagine that we want to build a system that can classify images as containing, say, a house, a
car, a person or a pet. We first collect a large data set of images of houses, cars, people and pets,
each labeled with its category. During training, the machine is shown an image and produces
an output in the form of a vector of scores, one for each category. We want the desired category
to have the highest score of all categories, but this is unlikely to happen before training. We
compute an objective function that measures the error (or distance) between the output scores
and the desired pattern of scores. The machine then modifies its internal adjustable parameters
to reduce this error. These adjustable parameters, often called weights, are real numbers that
can be seen as ‘knobs’ that define the input–output function of the machine. In a typical deep-
learning system, there may be hundreds of millions of these adjustable weights, and hundreds
of millions of labeled examples with which to train the machine (LeCun et al., 2015, p. 436).

It is clear from this definition that supervised learning requires vast amounts of data and very
well labeled, so that the machine can be trained with this clean set of images and thus learn
how to recognize objects of the same classes. By 2009, there were not datasets the combined a
large number of images, a rigorous labelling process, and well constructed categories that made it
easy to manipulate. CIFAR-10 and CIFAR-100 became quickly benchmarks for new algorithms of
computer vision using DL. However, it was CIFAR-10 that had the most impact. According to
experts’ accounts [Fergus, 2022, Interview No. 2] beyond the reliability, the size of this dataset and
its simplicity were key for its success. In fact, it was light enough so that it was easy to manipulate
and work with, specially to train algorithms that require a lot of computer power, but had enough
data to properly train a neural network. As a corollary, Fergus (2022, Interview No. 2) added that
the fact that “every student can run CIFAR-10 on their laptop” make a difference in terms of usage.

CIFAR databases were made available for free on the web from the University of Toronto, very
much in line with the Open Data paradigm mentioned above. Along with the other characteristics,
the easy availability became one the distinctive characteristics and main advantages of the CIFAR
datasets.
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During the same period, other research teams were developing similar image databases. One
notable example is ImageNet, created by Fei-Fei Li (currently at Stanford University, formerly
at the University of Illinois Urbana-Champaign) and Christiane Fellbaum (Princeton University),
and introduced in 2009. ImageNet includes a large collection of labeled object images and rapidly
became a benchmark for state-of-the-art computer vision algorithms. The dataset was annotated
using Amazon Mechanical Turk (MTurk)2. For a more detailed description of ImageNet and other
similar datasets, see Section 4.2 and Table C1.

In the following sections, we will evaluate whether OLDs, particularly CIFAR-10, have influenced
the development and evolution of DL as a technoscience. Specifically, we will explore whether the
unique characteristics of these open datasets contributed to the development of the foundational
Convolutional Neural Network (CNN) architectures that sparked the DL revolution.

4 Methods and data

4.1 Method

For the empirical analysis we use a mixed methods approach (see Appendix A for details). The initial
step was to conduct semi-structured interviews with relevant actors, including prominent academics
working on the field of AI and DL, as well as CIFAR personnel linked directly or indirectly to the
creation of CIFAR-10. Two kinds of interviews were conducted: general interviews with academics
working on AI, not necessarily related to CIFAR datasets, with the aim of getting an understanding
of the field and some general features that practitioners might look for in a training dataset; and
more specific interviews with strategic individuals that were directly or indirectly related to the
development of the CIFAR datasets. In total we conducted 7 interviews, out of which 2 were with
field experts not linked to CIFAR; and 5 with persons linked to CIFAR.

Second, we surveyed researchers and practitioners who referred to CIFAR datasets in their
articles. The survey aims to validate the information obtained from the interviews and develop
a broader assessment of the impact of the CIFAR-10 on DL and Computer Vision. The sample
population includes corresponding author from the subset of papers referencing CIFAR datasets out
of 6,060 paper we were able to retrieved 3,033 valid emails (see Qualitative Methodology Appendix
A for the response analysis and survey questions). We were able to collect 295 answers to the survey,
which corresponds to a response rate of 9.4%. The response analysis indicates that our sample is
representative for most variables available for the population (total and valid email).

Finally, we concentrated on publications in the ML literature that utilized OLDs for model
training between 2010 and 2022, following the release of the CIFAR and ImageNet datasets. We
conducted an econometric analysis aimed at examining the relationship between the use of specific
OLDs and receiving citations from patent and scientific publications. Our method involved com-

2MTurk is a crowdsourcing platform provided by Amazon Web Services that connects businesses and researchers
with a global pool of remote workers. It is designed to handle tasks that are difficult for machines but relatively easy
for humans, such as labeling datasets.
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paring publications that referenced CIFAR-10 and ImageNet with those that did not but used one
of the other similar labeled datasets, while controlling for various confounding factors. Specifically,
we estimate regressions of the following models:

E[Citationsjst] = exp(β1CIFAR-10 (only)jst + β2CIFAR-10 (others)jst+

+ β3Xjst + αj + δs + γt + εjst)
(1)

E[Citationsjst] = exp(β1CIFAR-10 (only)jst + β2CIFAR-10 (others)jst + β3ImageNetjst+

+ β4Xjst + αj + δs + γt + εjst)
(2)

For each focal paper published of type j (scholarly journal or conference proceeding), in a
scientific area s and year t, we measure its outcome using different metrics that capture their
technological and scientific citation impact. Our main explanatory variables are binary indicator
s that assumes value 1 if the paper mentioned only CIFAR-10, CIFAR-10 and other datasets or
ImageNet. Our main dependent variables which we use as measure of technological and scientific
relevancy are the total number of patents citing the articles and the total number of scientific
citations.

To ensure a fair comparison of our articles, we develop an empirical design that allows us to
compare similar ML/DL articles that differ only in their use of the CIFAR-10 dataset for model
training. Thus, we incorporate a set of control variables, Xjst, which describe various characteristics
of the focal papers and are related to citation impact. These controls include the number of authors,
the number of references, the presence of international collaboration, and the share of authors
affiliated with companies, as these factors may influence both the use of CIFAR-10/ImageNet and
citation impact.

Additionally, we include as control variables observable characteristics of the labeled datasets
used in the papers, such as the number of OLDs mentioned, the number of modalities (i.e., different
types of data beyond images, such as text and audio), and the number of ML prediction tasks
performed with these datasets3. These dataset characteristics serve as proxies for the types of DL
models being developed and refined, helping us partially control for factors that could simultaneously
affect both citation counts and the use of the primary OLDs under investigation.

We then estimate a fixed-effects Poisson model, including the independent and control variables
discussed above and a set of fixed effects which includes type of publication αj , scientific fields δs

and calendar year γt to control for time-invariant features that may also explain citation impact.
In the robustness checks we use Negative Binomial model and different variable operationalization
and sample definitions to test the consistence with. We use the same setting for both technology

3Further considerations regarding tasks are provided in Section 4.2. As the field advances, datasets are increasingly
applied to new tasks. Nonetheless, we use the number of unique tasks identified for each dataset up to July 2023 as
a proxy for the breadth of application of a specific OLD in these fields.
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and scientific citations impacts.
We do a split sample analysis focusing on two periods 2010-2014 and 2015-2022. We identify 2014

a year of structural change in the motivations to use CIFAR-10 because it was the year where state-
of-the-art DL models consistently surpassed human-level accuracy in image classification tasks4.
Thus, from 2015 onward CIFAR-10 was essentially a “solved problem”: prediction accuracy and
error rates of trained models were comparable to humans-levels. We perform the split sample
analysis for both model 1 and 2: while the former allow us to estimate how many citations papers
using CIFAR-10 are expected to receive compared to papers that do not (conditional on observable
paper characteristics), the latter model enables us to assess the expected citations for papers using
CIFAR-10 or ImageNet in comparison to others. By comparing the coefficients of the CIFAR-10
and ImageNet variables, we can evaluate how papers utilizing datasets of different dimensions and
complexity perform in terms of citations.

4.2 Data

We constructed a novel and unique dataset that includes both detailed bibliometric information on
publications and patents in the ML literature on image recognition and object classification and
the OLDs used by them to train DL models. Our data collection process involves identifying OLDs
similar to CIFAR-10, the most used dataset in the ML literature indexed at the Papers with Code
website5. Papers with Code is a platform launched by ML practitioners in July 2018 to share open
resources associated with AI development, with a focus on ML (Martínez-Plumed et al., 2021).
Presently, Papers with Code comprises approximately 135 thousand research papers, encompassing
over 11 thousand benchmarks that address 5,000 distinct tasks.

First, we identified all the tasks mentioned in Papers with Code that involved models trained
with CIFAR-10. These tasks refer to different types of predictions or inferences made using models
trained on specific data. For example, image datasets can be used to train ML models to solve tasks
such as image classification, object detection, and anomaly detection. See Table B1 in Appendix
B for a detailed list of these tasks related to CIFAR-10. Our analysis identified 46 tasks related to
CIFAR-10 that have been utilized in developing ML models. We then used these tasks to identify
other datasets used to train models that handle at least one task similar to those involving CIFAR-
10. For information on the most frequently used datasets, see Table C1 in Appendix B.

The Papers with Code platform aggregates ML research papers that are openly accessible and
accompanied by source code, mostly sourced from the open access online repositories like arXiv.
To obtain better bibliographic and citation coverage, we collected scientific publications using a
list of annotated datasets of interest on Scopus, Elsevier’s citation database. Specifically, we used

4The human error rate on CIFAR-10 is estimated to be around 6%. Working papers originally published in the
end of 2014 achieved an error rate of around 3-4% (Graham, 2015).

5The Papers with Code platform offers access to all its contents under the CC BY-SA licence, which can be
downloaded from the website paperswithcode.com/about. In the context of this study, we obtained the data to
perform our analysis on July 17, 2023.
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the Scopus database6 to find any publication that mention a datasets in our list in their titles,
abstracts, or keywords. As annotated datasets frequently have variations or subsets tailored to
specific tasks, we searched for the full names, shortened names, and variants of each dataset.This
approach allowed us to identify 37,242 Scopus indexed scientific publications that mention a total
of 264 unique labeled datasets7.

Figure 1: Distribution of Publications by Subject Area

Notes: This figure displays the distribution of All Science Journal Classification (ASJC) codes assigned by Scopus to
each paper based on its journal, conference, or other publication venue. Note that papers may be assigned multiple
ASJC codes.

Using Scopus’ All Science Journal Classification (ASJC) codes, we identified the scientific fields of
the publications that frequently use the datasets in our study, as shown in Figure 1. Unsurprisingly,
most of the papers in our sample are published in journals from the fields “Software”, “Artificial
Intelligence”, “Computer Vision and Pattern Recognition” and “Computer Science Applications”.
Interestingly, there is also significant representation from “Electrical and Electronic Engineering”,
“Hardware and Architecture”, and “Control and Systems Engineering”, suggesting that these datasets
have technological applications beyond strictly computer science disciplines.

6We utilized pybliometrics, a Python package for accessing the Scopus API. See Rose and Kitchin (2019) for
further details on the package.

7In the remainder of this work, we will consider publications that mention a dataset in the title, abstract, or
keywords and use a dataset to train ML models as equivalent. We acknowledge that this approach has limitations,
as authors might not always mention the dataset used to train their models in these sections, or may mention only
some of them. We explored using backward citations to introductory papers, but this method proved less precise
and biased. Despite these limitations, we believe that referencing datasets in the title, abstract, or keywords provides
a strong indication of the dataset’s importance in the publication and is the most reliable way to identify relevant
papers in this literature.
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Figure 2: The Rise of Annotated Image Datasets

Notes: This figure illustrates the annual growth in the number of publications referencing the 15 most commonly used
annotated image datasets. The vertical dashed line denotes 2009, the year ImageNet and CIFAR-10 were introduced,
while the solid horizontal line marks 2012, the year of the DL revolution.

To understand the technological developments linked to papers using OLDs, we complement
the Papers With Code and Scopus data with patent-publication citation links from the Reliance on
Science dataset (Marx and Fuegi, 2020; Marx and Fuegi, 2022). We gather all the front-page and
in-text citations of patents granted worldwide that reference scientific papers in our sample. Since
our focus is on technological developments rather than intellectual property concerns, we aggregate
these patents into patent families using data from the EPO-PATSTAT database (Autumn 2023
version). We identified 31,170 patents families citing 14,435 papers from our sample of journal
articles and conference proceedings, either on the front-page, in-text, or both8.

Considering the relative distribution of the datasets used by publications in our sample, Figure
2 illustrates the number of yearly publications citing the fifteen most common datasets in computer
vision and image recognition literature using ML, accounting for 81.67% of papers. The significant
increase, particularly after 2012 — the year of the DL revolution — was primarily driven by papers

8We have decided to include in-text citations as well, because we believe that non-patent literature cited only on
the front page would not adequately cover less conventional scientific publications, such as conference proceedings,
data introductory papers, and other sources likely to be found throughout the full patent text.
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citing ImageNet, MNIST, COCO, and CIFAR-109, which account for 62.71% of the total sample.
CIFAR-10 and ImageNet represent 33.23% of the publications in our sample and show similar
trends: both were introduced in 2009 by young scholars who believed in the potential of labeled
datasets to advance DL. These datasets consist of natural images and have been used for various
tasks such as image classification, object recognition, and image generation10. They are the first
two most used databases in Papers with Code. The main difference between them is that CIFAR-10
is much smaller, with 60,000 images and 10 categories, compared to ImageNet’s 14,197,122 images
and over 20,000 categories. Additionally, ImageNet was central to the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) from 2010 to 2017, which incentivized the development of ML
models using this dataset.

Regarding the other two datasets, MNIST is a dataset of handwritten digits introduced in 1998.
It comprises 60,000 training examples and 10,000 test examples, with digits that have been size-
normalized and centered in fixed-size images. COCO, introduced in 2014 by a Microsoft group,
contains images of complex everyday scenes with common objects in their natural context. It in-
cludes 91 object categories, 82 of which have more than 5,000 labeled instances, totaling 2,500,000
labeled instances in 328,000 images. Unlike ImageNet, COCO has fewer categories but more in-
stances per category, and it is used for tasks such as detection, segmentation, and captioning.

Table 1 provides an overview of the computing capacity required for the four most commonly
used datasets. Using the best supercomputer in 2024 and a typical research laptop as benchmarks,
and referencing state-of-the-art algorithms that outperform humans on CIFAR-10 and MNIST, it
is clear that MNIST is now too simple for complex tasks, while COCO remains too challenging to
solve fully. Therefore, we believe ImageNet is the best candidate for comparison with CIFAR-10.
It is important to note that CIFAR-10 is both sufficiently complex and manageable in size. For
instance, training a model to achieve human-level accuracy of 94% on CIFAR-10 would take an
average research laptop about 10 seconds (Jordan, 2024).

To analyze the citation patterns described in Section 4.1, we consider only publications between
2010 and 2022, reducing our sample to 36,859 publications11. We chose 2010 as the starting year
because it marks the introduction of the two most popular OLDs to the ML community: CIFAR-10
and ImageNet. We further restrict our sample to conference proceedings and journal articles, as
these are the types of publications where we expect to see ML models trained using OLDs, excluding
review papers and data introduction papers. This restriction leaves us with a sample of 35,705.

Since we want to compare similar articles, we removed those lacking fundamental bibliometric
information used as control variables12. Additionally, not all publications indexed by Scopus can be

9For more information on these datasets, visit their official sites: ImageNet, MNIST, COCO, and CIFAR-10.
10According to our analysis using the Papers with Code platform, CIFAR-10 has been utilized in 46 unique tasks

and ImageNet in 64 tasks, with 24 tasks overlapping between the two (52.17% of CIFAR-10 tasks). See Table B1 for
details.

11Few papers used large labeled datasets before the DL revolution in 2012, thus we lose very few papers in this
step

12We have 28 publications missing author information, 1,761 missing references, 1,074 missing affiliation informa-
tion, and 4 missing subject area information. We also exclude 2 papers that came from dataset that are described in
Papers With Code, but do not have any paper indexed to it in the platform.
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found in Reliance on Science and vice versa, due to duplicated IDs and other issues. Thus, to ensure
reliable information about patent citations, we drop from our sample 4,944 conference proceedings
and journal articles for which we cannot confirm the number of patent citations received. This
leaves us with 28,416 papers and proceedings13.

Among these, we identified 23 papers (top 0.1% in the citation distribution of the full sample and
0.08% in the restricted sample) as outliers, which received citations orders of magnitude higher than
the others14. These publications represent breakthroughs so significant that they are not comparable
with the average paper in the field. To ensure the comparability, robustness, and stability of our
estimations, we excluded these outliers from our sample.

Table 2: Summary Statistics

Statistic N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

CIFAR-10 28,393 0.154 0.361 0 0 0 0 1
CIFAR-10 (only) 28,393 0.041 0.198 0 0 0 0 1
ImageNet 28,393 0.199 0.399 0 0 0 0 1
Nb. Authors 28,393 4.320 2.581 1 3 4 5 100
Nb. References 28,393 36.212 20.505 1 22 33 47 811
International Collaboration 28,393 0.245 0.430 0 0 0 0 1
Share Company Affiliation 28,393 0.040 0.152 0 0 0 0 1
Nb. Patent Citations 28,393 0.157 1.049 0 0 0 0 48
Nb. Scientific Citations 28,393 16.365 73.377 0 0 2 10 2,279
Nb. Dataset 28,393 1.300 0.657 1 1 1 1 7
Nb. Modalities 28,393 1.246 0.465 1 1 1 1 5
Nb. Tasks 28,393 46.647 29.430 1 25 54 67 183
Nb. Tasks Similar CIFAR-10 28,393 15.876 16.082 1 2 5 24 46
Share Tasks Similar CIFAR-10 28,393 0.345 0.350 0.022 0.043 0.109 0.522 1

Notes: Summary statistics for regression sample on publications mentioning annotated image
datasets.

Our final data sample for the econometric analysis includes 28,393 journal articles and conference
proceedings, as well as 252 labeled datasets. Table 2 provides descriptive statistics for our regression
sample. Approximately 15.4% of the sample cited the CIFAR-10 dataset in the ten years following
its release, while 19.9% cited the ImageNet dataset. However, only 4.1% cited CIFAR-10 exclusively,
indicating that CIFAR-10 is often used alongside other datasets. On average, each paper cites only
1.3 datasets, with the third quartile being 1 dataset. The average number of authors per paper is
4.32, and 24.5% of the papers include at least one international collaboration (i.e., authors from
multiple countries). Private companies are represented as well, with 4% of authors affiliated with
companies (9.4% of the papers have one company affiliated author). Focal papers have an average
of 36 backward citations and 16 forward citations, with considerable variation. The average number
of different modalities used is 1.25, indicating that most papers focus solely on images. Finally,

13We perform robustness checks using the sample without excluding those publications in Appendix D.
14The most cited paper in our sample is “Deep Residual Learning for Image Recognition,” published in the Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition by a Microsoft group. This
paper introduced the Residual Networks (ResNet) architecture, a key component in modern DL models (e.g., Trans-
formers, AlphaGo Zero), and has received 95,139 citations. It was the most cited paper globally for five consecutive
years, according to Google Scholar (source: Nature Index).
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the number of unique tasks overlapping with CIFAR-10 tasks across all datasets used in the focal
papers is approximately 16, representing 34.5% of similar tasks. In summary, this sample consists
of papers using the most common labeled datasets in computer vision, with tasks closely related to
those central to the DL revolution.

5 Findings

In this section we explore the role played by OLDs and in particular of CIFAR-10 on the devel-
opment of DL using our three sources of information: the qualitative interviews, the survey and
the bibliometric data. We use different approaches to triangulate and pinpoint how CIFAR-10
contributed to making DL a dominant paradigm within AI, as well as the factors that explain the
widespread use of the CIFAR-10 in industrial and academic settings.

5.1 Interviews analysis

Bridging the gap - Dataset characteristics. From the interviews that we conducted, the
first element that prominent practitioners mentioned, was how CIFAR-10 went a step ahead of the
MNIST but was more manageable than ImageNet, creating a sort of bridge between those two
moments of the development of DL. Yoshua Bengio (2022, Interview No. 05) mentions how the
team at CIFAR had achieved some success with MNIST but “we didn’t have datasets of comparable
size for natural images”. This was confirmed by Rob Fergus (2022, Interview 02), and Yan LeCun
(2022, Interview No. 4) both of whom mentioned that there was a “gap” that CIFAR-10 helped to
fill.

An important element that made CIFAR-10 a bridge is that it used a small number of categories,
like MNIST, but also natural images, like ImageNet.

It was much harder than the 10 digits [of MNIST], it was much, much harder. So it was useful,
but the size was the same 60,000 training examples. So that mean, we could use the same kind
of architectures. (Bengio, 2022, interview No. 05).

That also helps explain why it was CIFAR-10 (and not CIFAR-100) the one that had the most
impact:

Yes, CIFAR 10 was the one that really had a big impact. For one it was exactly the same format
that MNST, 10 categories. When people started working with CIFAR 100, it was much harder.
So there are 100 categories, yeah, but you have the same amount of data so that the accuracy is
much worse. So CIFAR 100 has been used, but as far as I know, not nearly as much as CIFAR
10. (Bengio, 2022, Interview No. 05).

Testing architectures and scaling up. The second element that emerges from the interviews it
that CIFAR-10 was simple enough to test and iterate different algorithms and architectures, without
requiring prohibitive amounts of computer power. Those architectures could then be used in more
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challenging datasets. Yoshua Bengio, Yan LeCun and Rob Fergus insisted, in very similar terms,
on the potential of CIFAR-10 for trying different architectures and iterate experiments:

So in a way, what I’m trying to say is working with CIFAR-10 we discovered architecture tricks,
if you want a methodology, for training deeper networks that Alex was then able to apply to
ImageNet. So, yeah, CIFAR-10 was kind of instrumental on the path to the modern revolution
of computer vision with DL. (Bengio, 2022, Interview No. 05).

So I think, when you’re trying to develop a new method, you’ve got to be able to iterate
experiments quickly. And ImageNet is still, [. . . ] a bit too big to do that with. And it turns
out that the performance on CIFAR-10 generalizes quite well to other data sets like ImageNet.
So, you can prototype on CIFAR-10. And then, you know, get some promising stuff, and then
move over to something a bit bigger and harder. (Fergus, 2022, Interview No. 02).

This characteristic became instrumental in the development of AlexNet, which marked the
turning point in the DL revolution:

The AlexNet paper, I’m not sure would have happened, had it not been for CIFAR-10. Because
otherwise, it would have been very difficult for them [Alex and Ilya] to go directly to the
ImageNet dataset, which was quite new at the time, and definitely quite big at the time, too,
and challenging to use. (Fergus, 2022, Interview No. 02)

Pedagogical potential. The third element that according to the interviewees help explain the
success and persistence of CIFAR-10 as relevant tool for DL, is its pedagogic value. Since working
on it does not require onerous computational capabilities, it can be easily used for teaching purposes.
Bengio notes that:

My students started to use it pretty soon, like, we were hungry for that. And we were aware of
it even before it was released, because Geoff [Hinton] was talking about it. And you know, we
were in close communication with Geoff [Hinton]. Bengio (2022, Interview No. 05)

In the same line of reasoning, Fergus stated:

Once you’ve got a lot more people interested in DL, it was a great sort of introductory data
set. I mean, small enough, you can do it in, you know, if you’re teaching a class, you can use it,
because every student can run CIFAR-10 on their laptop, more or less. Fergus (2022, Interview
No. 02)

5.2 Survey analysis

Survey and Respondents Description. The survey has received 295 complete responses, with
a total response rate of 9.4% at the time of closure. The vast majority of respondents (228) hold a
Doctorate degree (PhD), and most of the respondents are employed in academia. 20% of respondents
work in industry or in a combination of industry and academia, when we look at the article affiliation
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we find a much lower share, about 11%, confirming the importance of mobility of researchers from
academia to industry.

The Importance of the Datasets. Figure 3 reports responses on the importance of CIFAR-10 for
the development of DL and Computer Vision were overwhelmingly positive. 76% believe CIFAR-
10 was very or extremely important for the development of DL and 73% for the development of
Computer Vision. 44% considered CIFAR-10 as extremely important for the development of DL in
general, not only for Computer Vision. Though CIFAR-10 included labeled images, it is considered
important for the development of the general field of DL.

Figure 3: Survey Results - CIFAR-10 Datasets Impact on DL & Computer Vision

Notes: This figure shows the distribution of answers for the Impact question.

Use compare to other OLDs. We asked the respondents to rate the reasons why they choose
CIFAR-10 compared to similar datasets in the public domain. Based on our interviews we included
the quality of labelling, comparability as a benchmark, number of categories and images, image
size, and data availability. Respondents rated each section on a Likert scale ranging from 1 (not
important) to 5 (extremely important). Figure 4 present the results of this questions. Around
90% of respondents rated availability and comparability as very or extremely important. Quality of
labelling and number of images were also considered important in explaining the choice of CIFAR-10
by 72% and 66% of the respondents.

Pedagogical use of the datasets. Figure 5 reports an interesting dimension of the survey: the
pedagogical use of CIFAR-10. A significant number of respondents - 193 (65%) - reported that
they were introduced to the dataset during their studies (at the Bachelor, Master, or PhD level),
and most respondents in academia routinely use it in their teaching programs. Furthermore, the
responses to the open-ended question highlight the importance of CIFAR-10 as a pedagogical tool.

The last question of the questionnaire was open, we asked to describe why they thought that
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Figure 4: Survey Results - Comparing CIFAR-10 with Similar Datasets

Notes: This figure shows the overall distribution of response for the question comparing CIFAR-10 to other datasets.

CIFAR-10 was important for the development of DL or CV. Out of the 295 complete questionnaires
analysed, we have got 182 quite detailed answers with a lot of interesting insights. To analyse them
we have used the premium version of ChatGPT asking the algorithm to “identify the 5 main themes
in the list of answers”.

• 1. Benchmarking and Comparison: CIFAR-10 is frequently cited as a standard bench-
mark for evaluating and comparing the performance of various algorithms and models. It
provides a common platform for fair comparisons and validation, which is essential for devel-
oping and testing new methods in DL and computer vision.

• 2. Accessibility and Ease of Use: The dataset is noted for its accessibility and ease of use.
It is readily available, simple to download, and manageable in terms of size and computational
requirements. This makes it an ideal choice for both beginners and researchers without access
to extensive computational resources.

• 3. Educational Value and Prototyping: CIFAR-10 serves as an excellent educational tool
for new learners and students. Its simplicity and comprehensibility makes it a good starting
point for understanding and experimenting with DL concepts. Additionally, it is suitable for
rapid prototyping and initial testing of new ideas before scaling up to more complex datasets.

• 4. Quality and Characteristics of the Dataset: The dataset is appreciated for its well-
labeled, high-quality images. It offers a balanced number of categories and samples, which
are sufficiently challenging for various image classification tasks. Its small image size and the
diversity of the data allow for efficient experimentation and training..

• 5. Historical and Continued Relevance: CIFAR-10 has historical significance in the field
of computer vision and DL, having been used in many foundational studies and developments.
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Figure 5: Survey Results - Integration of CIFAR-10 in Teaching environment

Notes: The graphs illustrate the responses of participants regarding their usage of CIFAR-10 in teaching, as well as
their introduction to CIFAR-10 based on their academic background.

Despite advancements in technology and the availability of larger datasets, it remains rele-
vant due to its widespread use and the wealth of existing research that has utilized it as a
benchmark.

We also created a word cloud of the most common terms used in the answers to the open
question15. We excluded some frequently used terms like “CIFAR” and “database”, to get a more
accurate idea of the reasons respondents assign importance to CIFAR-10. Figure 6 shows that
“benchmarking” and “learning” are the most used terms, with 49 and 41 times respectively. These
results are consistent with the analysis made through ChatGPT.

The evidence from both interviews and survey is consistent in highlighting that the specific
characteristics (size, complexity, generalization) of CIFAR-10 made it the technological tool needed
to develop and test convolutional neural network algorithms that gave rise to DL revolution. We
also find consistent evidence that the accessibility, versatility, use as benchmark and pedagogical use
of CIFAR-10 supported its continuous use and relevance even if much more complex and targeted
OLDs became available in the ten years after its release.

15The word cloud was generated using Voyant Tools, an online open-source text analysis software available at
https://voyant-tools.org/.
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Figure 6: Word cloud of main terms used in the open-ended question in the survey

Notes: This figure shows the most common terms used by respondents in the open-ended question on why CIFAR-10
was important for the development of DL or CV.

5.3 Econometric analysis

Results. In Table 3 we present the results of estimation equations 1 and 2 using as outcome
variable the number of patent citations received by a paper using OLDs. Column 1 shows that papers
mentioning only CIFAR-10 in the title, abstract or keywords received, on average, e0.418−1 = 51.89%

more patent citations than papers that do not mention it. Considering only the first half of the
decade after the creation of CIFAR-10 (2010 to 2014), as shown in column 2, papers mentioning
CIFAR-10 accrued, on average, nearly double the citations (e0.692−1 = 99.77%) compared to those
using other datasets. In the later period (2015 to 2022), as shown in column 3, papers using only
CIFAR-10 continued to receive on average a higher number of citations than other papers, though
the effect is less significant in terms of magnitude (e0.366 − 1 = 44.20%) and statistical significance.
Papers using CIFAR-10 and other datasets receive, on average, the same number of citations as those
not using CIFAR-10 across all periods. In columns 4-6 we estimate regressions using specification
2 and find similar results for papers using only CIFAR-10 and those using CIFAR-10 along with
other datasets. Papers using ImageNet received, on average, 24.86% more patent citations over the
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entire period (e0.222 − 1 = 24.86%), primarily driven by papers published before 2015 (column 5,
e0.959 − 1 = 160.91%). CIFAR-10-only papers are expected to receive, on average, more citations
(e1.090 − 1 = 197.43% in column 5) than papers using ImageNet, although the effect magnitude is
comparable. Interestingly, more recent papers using ImageNet receive (not statistically significant
for those published between 2015-2022, column 6), on average, a similar number of patent citations
as papers using datasets other than CIFAR-10.

Table 4 shows the results of Poisson regressions for scientific citations. Columns 1-3 presents
results for specification 1. As we can observe in column 1, on average papers that mention only
CIFAR-10 or CIFAR-10 and other datasets between 2010 and 2022 receive less citations than paper
that do not cite it, but this difference is not statistically significant at conventional confidence
levels. However, if we taken into consideration only the first half of the 2010 decade (2010 to
2014) as in column 2, we find that papers using only CIFAR-10 or CIFAR-10 and others accrued on
average 64.38% and 181.51% more citations than articles using other datasets. When considering the
period post-2014 (2015 to 2022) in column 3, we see that papers using CIFAR-10, both alone and in
combination with other datasets, received fewer citations compared to the average citations received
by other papers. The results in column 3 are significant in both magnitude (e−0.346−1 = −29.25%)
and statistical terms for papers using CIFAR-10 along with other datasets, suggesting that the
scientific citation impact of CIFAR-10 was primarily concentrated in its early years.

In columns 4-6 of Table 4, we consider model specification 2, where we compare papers citing
either CIFAR-10 or ImageNet with those using other similar datasets. The results in column 4
indicate that, overall, papers mentioning CIFAR-10 do not differ significantly in terms of scientific
citations compared to those mentioning other datasets. In contrast, papers mentioning ImageNet
receive significantly more citations on average (e0.386 − 1 = 47.11%). However, the difference
in citations between papers mentioning CIFAR-10 and those not mentioning it is positive and
significant in the first period (column 5) but becomes statistically insignificant in the last period
(column 6). Meanwhile, papers using ImageNet consistently receive more citations on average in
every period, though they received fewer citations than papers using CIFAR-10 in the first period.
Specifically, during 2010-2014, papers mentioning CIFAR-10, either alone or with other datasets,
received 101.58% and 295.11% more citations, respectively, compared to those using other datasets
but not ImageNet. In comparison, papers using ImageNet received 81.14% more citations than
those not using CIFAR-10.

Robustness Checks. In Appendix D, we perform a series of robustness checks and sensitivity
analysis using various estimation methods, different sample definitions, and alternative model spec-
ifications.

Alternative Statistical Models. The Poisson model is not the only method for handling highly
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Table 3: Labeled Datasets and Patent Citations

Patents Citations
Full 2010-2014 2015-2022 Full 2010-2014 2015-2022

Model: (1) (2) (3) (4) (5) (6)

CIFAR-10 (only) 0.418∗ 0.692∗∗ 0.366† 0.486∗∗ 1.090∗∗∗ 0.385†

(0.169) (0.211) (0.199) (0.179) (0.211) (0.207)
CIFAR-10 (others) -0.055 0.339 -0.017 0.030 0.943 0.008

(0.187) (0.423) (0.171) (0.202) (0.621) (0.181)
ImageNet 0.222∗ 0.959∗∗ 0.067

(0.105) (0.355) (0.105)
log(Nb. Authors) 0.480∗∗∗ -0.103 0.681∗∗∗ 0.474∗∗∗ -0.091 0.680∗∗∗

(0.099) (0.157) (0.109) (0.100) (0.153) (0.109)
log(Nb. References) 0.674∗∗∗ 1.751∗∗∗ 0.472∗∗ 0.654∗∗∗ 1.621∗∗∗ 0.466∗∗

(0.149) (0.160) (0.147) (0.144) (0.150) (0.146)
International Collab. 0.087 0.191 0.049 0.084 0.113 0.048

(0.079) (0.241) (0.093) (0.079) (0.274) (0.093)
Share Company Affil. 1.147∗∗∗ 2.518∗∗∗ 0.964∗∗∗ 1.117∗∗∗ 2.199∗∗∗ 0.955∗∗∗

(0.198) (0.422) (0.145) (0.194) (0.433) (0.146)
Nb. Datasets 0.014 0.162 0.044 0.007 0.182 0.042

(0.090) (0.121) (0.081) (0.090) (0.136) (0.081)
Nb. Tasks 0.009∗∗∗ 0.010∗∗ 0.007∗∗∗ 0.007∗∗∗ 0.002 0.006∗∗

(0.002) (0.004) (0.002) (0.002) (0.004) (0.002)
Nb. Modalities 0.093 -0.597 0.183∗ 0.145† -0.477 0.198∗

(0.070) (0.392) (0.077) (0.078) (0.405) (0.085)

Pub. Venue Type Fixed Effect YES YES YES YES YES YES
Subject Area Fixed Effect YES YES YES YES YES YES
Publication Year Fixed Effect YES YES YES YES YES YES

Observations 27,905 1,620 26,220 27,905 1,620 26,220
Dependent variable mean 0.15951 0.54691 0.13596 0.15951 0.54691 0.13596
Pseudo R2 0.26575 0.25381 0.26234 0.26654 0.26795 0.26241

Notes: This table reports estimates of regressions of the models described in equations 1 and 2. The dependent
variable is the total number of patent families that cited the focal paper. The response variables are indicator variables
that are equal to one if a paper mentions only CIFAR-10, CIFAR-10 among other datasets or ImageNet in the title,
abstract or keywords. Columns (1) reports our baseline results of the estimates stemming from a Poisson regression.
Column (2) and (3) reports estimates of the same equation in a subset of the sample comprised of papers published
from 2010 to 2014 and those published from 2015 to 2022, respectively. Columns (4 - 5) report estimates when adding
a dataset indicator variable also for papers using ImageNet. Exponentiating the coefficients and differencing from one
yields numbers interpretable as elasticities. All the specifications include publication venue type, publication year and
scientific field fixed effects. Standard errors are clustered at the journal/conference level. Significance levels: †p<0.1;
* p<0.05; ** p<0.01; *** p<0.001.
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Table 4: Labeled Datasets and Scientific Citations

Scientific Citations
Full 2010-2014 2015-2022 Full 2010-2014 2015-2022

Model: (1) (2) (3) (4) (5) (6)

CIFAR-10 (only) -0.026 0.497∗∗ -0.051 0.108 0.701∗∗∗ 0.082
(0.090) (0.172) (0.101) (0.095) (0.186) (0.108)

CIFAR-10 (others) -0.294 1.035∗ -0.346∗ -0.155 1.374∗ -0.207
(0.191) (0.489) (0.156) (0.216) (0.584) (0.179)

ImageNet 0.386∗∗∗ 0.594∗ 0.384∗∗∗

(0.092) (0.284) (0.092)
log(Nb. Authors) 0.351∗∗∗ -0.130 0.438∗∗∗ 0.341∗∗∗ -0.127 0.427∗∗∗

(0.072) (0.178) (0.076) (0.072) (0.178) (0.076)
log(Nb. References) 1.202∗∗∗ 1.367∗∗∗ 1.180∗∗∗ 1.180∗∗∗ 1.324∗∗∗ 1.157∗∗∗

(0.135) (0.265) (0.137) (0.138) (0.257) (0.140)
International Collab. 0.324∗∗∗ 0.335† 0.322∗∗∗ 0.321∗∗∗ 0.294 0.322∗∗∗

(0.041) (0.173) (0.038) (0.042) (0.179) (0.039)
Share Company Affil. 1.271∗∗∗ 1.268∗∗ 1.284∗∗∗ 1.224∗∗∗ 1.079∗ 1.240∗∗∗

(0.151) (0.471) (0.155) (0.145) (0.454) (0.151)
Nb. Datasets 0.036 0.337∗ 0.041 0.029 0.320† 0.034

(0.060) (0.139) (0.047) (0.061) (0.165) (0.046)
Nb. Tasks 0.008∗∗∗ 0.007∗∗ 0.007∗∗∗ 0.004∗∗∗ 0.003 0.004∗∗

(0.001) (0.003) (0.001) (0.001) (0.003) (0.001)
Nb. Modalities 0.189∗∗∗ 0.213 0.194∗∗∗ 0.290∗∗∗ 0.279 0.298∗∗∗

(0.045) (0.187) (0.047) (0.047) (0.192) (0.048)

Pub. Venue Type Fixed Effect YES YES YES YES YES YES
Subject Area Fixed Effect YES YES YES YES YES YES
Publication Year Fixed Effect YES YES YES YES YES YES

Observations 28,393 1,734 26,659 28,393 1,734 26,659
Dependent variable mean 16.365 39.354 14.870 16.365 39.354 14.870
Pseudo R2 0.41097 0.27955 0.42151 0.41527 0.28836 0.42589

Notes: This table reports estimates of regressions of the models described in equations 1 and 2. The dependent
variable is the total number scientific citations received by a paper. The response variables are indicator variables
that are equal to one if a paper mentions only CIFAR-10, CIFAR-10 among other datasets or ImageNet in the title,
abstract or keywords. Columns (1) reports our baseline results of the estimates stemming from a Poisson regression.
Column (2) and (3) reports estimates of the same equation in a subset of the sample comprised of papers published
from 2010 to 2014 and those published from 2015 to 2022, respectively. Columns (4 - 5) report estimates when adding
a dataset indicator variable also for papers using ImageNet. Exponentiating the coefficients and differencing from one
yields numbers interpretable as elasticities. All the specifications include publication venue type, publication year and
scientific field fixed effects. Standard errors are clustered at the journal/conference level. Significance levels: †p<0.1;
* p<0.05; ** p<0.01; *** p<0.001.
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skewed count data16. Table D1 presents estimates from a negative binomial regression17 based on
specification 1. When scientific citation count is used as the dependent variable, the direction of the
CIFAR-10 indicator variable coefficients remains consistent, although the significance levels differ.
This alternative model does not alter our main finding: the influence of CIFAR-10 in scientific
literature is predominantly concentrated in the earlier period. Results for patent citations are
qualitatively similar.

Further Restricted Sample. The publications in our initial sample are quite diverse, including both
journal articles and conference proceedings. To improve comparability, we further refine our sample
to include only conference proceedings. These proceedings are more likely to represent recent
advancements in ML models using labeled datasets. We restrict this further to papers that utilize
datasets covering at least 10% of the tasks addressed by CIFAR-10 and are indexed in Papers
With Code, aiming to minimize noise. Table D2 presents results for patent citations, while Table
D3 shows results for scientific citations. The findings are qualitatively similar to our main results
and exhibit greater significance and magnitude, providing additional evidence of the influence of
CIFAR-10 and ImageNet on technological and scientific advancements in DL. In patents citations
is confirmed the stronger and continuous use of CIFAR-10 compared to ImageNet.

Enlarged Sample. To ensure consistency in comparing patent and scientific citations, we initially
removed a substantial number of observations where patent citations could not be accurately mea-
sured (13.86% of papers with missing patent citation values), as well as various publication types
such as reviews, book chapters, and data papers. We then re-estimated our main specifications
using an enlarged sample that includes papers with missing patent citation counts and all publica-
tion types for both patent citations (Table D4 and scientific citations (Table D5. The results are
qualitatively consistent with our original findings.

Alternative Dataset Indicator Variable. Since papers often benchmark new ML models against
multiple datasets, isolating the citation impact of dataset size and complexity is challenging. To
address this issue, we refined our indicator variable to distinguish between papers using only CIFAR-
10 and those using CIFAR-10 in combination with other datasets. The variable for papers using
only CIFAR-10 is more likely to reflect the effect of a small, yet sufficiently large, dataset, while
the variable for papers using CIFAR-10 alongside other datasets also captures the influence of
combining multiple datasets. To test the sensitivity of our analysis to this variable definition, we
estimated models with an alternative specification where the independent variable is set to 1 for
any publication mentioning CIFAR-10, regardless of whether it is used alone or with other datasets,

16Another approach involves using OLS to estimate models with log-transformed dependent variables or employing
the inverse hyperbolic sine transformation. We chose not to use these estimation methods because our dependent
variables include many zeros, and results can be sensitive to the arbitrary addition of a constant to handle these zero
observations.

17Negative binomial regressions lack a fixed-effects estimator that is as consistent as the one in the Poisson fixed-
effects model. To address this, we substitute fixed effects with categorical variables that control for the same factors
as the fixed effects in the Poisson model.
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and 0 otherwise. Table D6 shows that while the results for patent citations are consistent in sign
with the full sample and the 2015-2022 period, they are no longer statistically significant. This
suggests that papers more significant in technological development predominantly use CIFAR-10
alone, supporting the idea that small-but-large-enough datasets play a unique role in advancing
DL models in computer vision. Results in Table D7 are qualitatively similar and confirm our main
findings.

Citation Lags. DL has experienced rapid growth in recent years, especially following the 2012
revolution and the release of the ChatGPT chatbot at the end of 2022. This surge has arguably
heightened interest in older publications in the field and altered citation patterns in ways that
publication year fixed effects may not fully capture. To assess the sensitivity of our results to different
citation specifications, we compare citation counts within a fixed number of years after publication.
This approach helps account for the dynamic nature of citation trends. Given the recent nature of
our sample, we focus on a 3-year citation window to avoid losing too many observations from more
recent years. Tables D8 and D9 present the results for patent and scientific citations within this
3-year window, respectively, demonstrating that the findings remain qualitatively consistent.18

Overall, our main results remain consistent, confirming the robustness of our findings across
various control variables, fixed effects, sample definitions, and model specifications.

6 Discussion

Through our interviews, we learned that CIFAR-10 became a benchmark due to its technical spec-
ifications, including the nature of the images, their size, and the number of samples and categories.
The timing of its release was also crucial to its popularity, as no other similar OLD was available at
the time. ImageNet, released in 2009 by a team of university researchers and associated with the
ImageNet Large Scale Visual Recognition Challenge, was also significant but proved too large and
complex. Even today, in 2024, solving ImageNet with the best model and the largest supercomputer
would take more than three years.

The survey confirms the insights from the interviews and reveals an additional role that CIFAR-
10 played in the diffusion of DL methods. We present evidence that CIFAR-10 is extensively used
in training computer scientists working with ML. Many researchers not only teach courses using
CIFAR-10 but were also exposed to the datasets during their own graduate programs. This finding
highlights teaching as a significant channel through which CIFAR-10 influences the field of DL.

The econometric analysis of the technological and scientific roles played by OLDs confirms that
CIFAR-10 has had a significant influence on the development of DL compared to other OLDs,

18We also conducted the analysis using the citation count of patent families sourced from Elsevier’s PlumX
Analytics. This metric includes only front-page citations from the European Patent Office (EPO), World Intellectual
Property Organization (WIPO), Intellectual Property Office of the United Kingdom (IPO), United States Patent and
Trademark Office (USPTO), and Japan Patent Office (JPO). The results were qualitatively similar.
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including its closest competitor, ImageNet. For science, we find that CIFAR-10’s contribution was
particularly important in the early years of DL development, with patent citations to CIFAR-10
remaining frequent in recent years. The role of ImageNet for the development of DL has been more
prominent and continuous, likely due to its complexity, which allows for the testing and development
of more advanced models. However, CIFAR-10 continued to outperform ImageNet (and all other
OLDs) in technological citations even in recent years.

In terms of scientific complexity, CIFAR-10 was effectively “solved” by 2014, when state-of-the-
art DL models achieved an error rate of around 3-4%, surpassing human-level accuracy in image
classification tasks. Its sufficient complexity and status as a benchmark make it particularly useful
in applied industrial research, where the speed of research and cost controls are more important
than new scientific achievements. This continued use and technological relevance can explain the
frequency of patent citations in recent years.

Based on the qualitative and quantitative evidence collected, it can be argued that CIFAR-
10’s lower computational requirements, ease of use, and the availability of a trained workforce
make it more suitable for technology-oriented developments, as reflected in patent activity. These
developments, which focus less on pushing the scientific frontier, are likely to rely more on CIFAR-10
compared to ImageNet and other more recent, complex datasets. The latter’s increased complexity
and higher computational demands make it less accessible for such practical applications.

This study has some limitations. First, while we have tried to interview active researchers in
computer vision during the DL revolution, we were unable to interview the creators of CIFAR-10,
Geoffrey Hinton, Vinod Nair, and Alex Krizhevsky. Gaining further insight into their motivations
could illuminate the choice of dataset characteristics and how these are related to the development
of DL models they were working on. Another limitation is the difficulty in identifying the specific
OLDs used in each paper. Despite experimenting with different approaches, pinpointing the datasets
in ML papers remains challenging. Future studies could employ more precise extraction algorithms
to identify the datasets used, leveraging the full text of papers. Additionally, this study is primarily
descriptive, making it challenging to establish causal effects of dataset usage. We do not observe the
full process of building and refining ML model architectures or which datasets were effectively used
prior to publication. Forthcoming investigations could exploit exogenous shocks in the availability
of OLDs to understand their impact on the development of the field.

7 Conclusion

This paper aims to shed light into the role played by OLDs in the development of DL. Understanding
the fundamental building blocks of this emerging technoscience is crucial, as these foundational
elements will likely impact socioeconomic development in the coming years. Current advancements
continue to be influenced by early events.

We find that CIFAR-10, a small yet sufficiently complex, well-labeled, and easily accessible
database, was fundamental for the developments leading to the DL revolution and continues to
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shape the field’s trajectory. We identify CIFAR-10 as one of the most important technological
artifact used to develop DL algorithms and architectures. We trace the creation of this dataset
to the CIFAR NCAP Summer School in 2008, where graduate students, supervised by Geoffrey
Hinton, a prominent scholar in the field, carried out the labeling of the datasets.

The evolution of AI in the early 2020s has been marked by significant investments by private
companies in data collection and computing capacity to develop advanced large language models
(LLMs) expected to profoundly impact society. A few large companies, which have been recruiting
top DL scientists (similar to the career trajectory of the lead scientists behind CIFAR-10) and
attracted a substantial share of new graduate and postgraduate DL researchers (as evidenced by
the current debate on universities’ challenges in retaining DL scientists and our own data on the
share of researchers working for companies), have the capacity to shape both the scientific and
technological trajectory of DL.

Previously, the field developed with an open science approach, where public and private actors
adhered to the ethos of open science by sharing data and methods. However, this approach has
changed significantly. We may be entering a new phase in DL development characterized by a more
traditional separation between science and technology, consistent with Partha and David (1994)
characterization of traditional science. If this is the case, there is an urgent need for substantial
investment in public science conducted at universities. The “small is beautiful” model exemplified by
the CIFAR-10 database may no longer be viable. Nonetheless, the widespread diffusion of CIFAR-
10 and its origins reflect a human capital imprint of “open science” ethics that could be leveraged
to maintain competitive dynamics in the DL field.
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Appendix A Qualitative methodology

The qualitative empirical material for this article is derived from a series of interviews with DL
experts involved in the DL revolution, managers and administrative staff at CIFAR associated with
the DL funding program, and computer science PhD students. The survey was conducted among
computer scientists and ML practitioners with scientific publications that mention CIFAR-10 in the
title, abstract and keywords indexed by Scopus.

First, we outline our study design. Next, we detail the mechanics of our interviews, including
how we used the interview guide and conducted the sessions. Then, we present the survey text and
response analysis.

Interviews. For the qualitative section, we conducted a series of semi-structured interviews of
two kinds: shorter conversations were held with academics working on AI, regardless of their direct
involvement with CIFAR-10, to gain a broad understanding of the field and identify general features
that practitioners might seek in a training dataset; and in-depth interviews with key individuals
who were directly or indirectly involved in the development of the CIFAR-10/CIFAR-100 datasets.
Table A1 provides a comprehensive list of all the interviews conducted. Some of these interviews
contributed to refining the research question, others provided empirical material for our conclusions,
and some served both purposes.

Table A1: List of interviews

Interview
number

Interviewee Affiliation Position Interviewer Date

1 Bruno Casella University of
Turin

PhD student Daniel Souza 12/07/2022

2 Rob Fergus NYU/ Deep-
Mind

Professor/ Re-
searcher Scien-
tist

Daniel Souza/
Aldo Geuna/
Jeff Rodriguez

21/07/2022

3 Gianluca Mit-
tone

University of
Turin

PhD student Daniel Souza 26/07/2022

4 Yann LeCun NYU/Meta AI Professor/VP
& Chief AI
Scientist

Daniel Souza/
Aldo Geuna

28/07/2022

5 Yoshua Bengio Université de
Montréal

Full Professor Daniel Souza/
Aldo Geuna/
Jeff Rodriguez

17/10/2022

6 Rachel Parker CIFAR Sr Director,
Research

Daniel Souza/
Aldo Geuna/
Jeff Rodriguez

18/11/2022

7 Melvin Silver-
man

CIFAR Former VP of
Research

Daniel Souza/
Aldo Geuna/
Jeff Rodriguez

08/12/2022

The selection of interviewees was opportunistic, leveraging existing contacts. From these initial
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contacts, we employed a snowball sampling method to reach individuals outside our direct network,
focusing on those recommended by interviewees and those with experience directly related to the
creation of CIFAR-10 and CIFAR-100. Additionally, we conducted shorter interviews with indi-
viduals peripherally related to the topic, selected for their direct, personal knowledge of specific
facts. This approach resulted in seven in-depth interviews that were transcribed, along with many
off-the-record conversations.

We framed the interviews as conversations, with most conducted online and a few by phone,
typically lasting between 15 minutes to an hour. Whenever permission was granted, we recorded the
conversations, though participants could designate specific comments as off the record at any time.
They were also given the option to review sections of the article in which they were mentioned before
publication to ensure accuracy and agreement with how their comments were used. Interviewees
had the choice to determine whether they wished to be identified by name or remain anonymous.

Interview Guide. In-depth interviews were based on a guide reproduced below, which aws adapted
in minor ways for each interview to reflect the fact that not all interviewees would have the same
information to impart.

Final Interview Guide for In-Depth Interviews

Research Question: What is the impact of CIFAR-10/CIFAR-100 on the development of Deep
Learning?

Interview goal : Understand the role of CIFAR-10 and CIFAR-100 in the Deep Learning Revolution.
We are also trying to better understand the chain of events that led to the development of these
two datasets around 2008/2009, particularly the Summer School of August 2008.

Questions:

1. What was the impact of CIFAR-10/CIFAR-100 databases and how would you measure it?

(a) Did it help the development of neural network algorithms?

(b) Did it help the development of computer vision?

(c) Did it help the development of other research topics in artificial intelligence?

(d) Should we measure the impact on publications?

(e) Should we measure the impact on patents?

(f) Should we measure the impact on working papers?

(g) Should we measure the impact on conference proceedings papers?

(h) Should we measure the impact on media?

2. Can you tell us about the history of the AI projects at CIFAR?
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3. How was the process of creating CIFAR-10/CIFAR-100?

4. Do you remember the NCAP summer school of 2008? Was that the moment in which CIFAR-
10/100 were born? Was the whole process of labelling finished during the summer school or
did it require additional work?

5. Who decided to give the name of CIFAR in CIFAR-10/100? Was it related to the funding of
the project?

Wrap-up

- Who else do you think I should engage on this in relation to their work with CIFAR-10/CIFAR-
100?

- Are you interested in seeing the results of this research?

- Thank you, very grateful for your time and thoughts.

Transcription. Most interviews were recorded and transcribed by the authors. When interviewees
declined to be recorded, or when recording was impractical, shorthand notes were taken during the
interview and subsequently expanded into detailed notes as soon as possible afterward.

Survey. The inputs from the interviews were used to produce a survey that was distributed to ML
practitioners and academics.

The questionnaire consisted of 9 questions; 3 of the questions were related to the informant
(education, place of work), and 4 directly to the evaluation of the CIFAR datasets. Figure A1
shows the full battery of questions.
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Figure A1: Survey Text
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Figure A1 (cont.): Survey Test Continued
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To select the universe of possible respondents, we used the contact details of authors of papers
extracted from Scopus that had used CIFAR-10 in their research. Out of the total of 6060 papers
extracted, we were able to recover a valid email address of a corresponding author for 3033 papers.
We sent a total of 4 requests to answer to the questionnaire to those authors in the period September
2022 to February 2023.

The survey had a response rate of 9.7%, with 392 authors starting the survey (13%) and 295
completing it. The authors were from different geographical locations, with most affiliations in
China and the US.

Figure A2: Distribution of CIFAR Papers among Top 20 Affiliations

Notes: The graph illustrates the fractional count of papers based on affiliations. The top 20
affiliations listed in the graph collectively account for 90% of the the CIFAR papers.

Table A2 presents the summary statistics of our response analysis. The table includes the Kol-
mogorov–Smirnov test (addressing the variance in the distribution) to compare the three sample
considered: Total population, Population Survey Sent and Population Survey Answered. We in-
cluded in our response analysis the following variables: Year of publication, Number of authors,
Citations count, Type publication (Journal versus others), International collaborations, Number of
OLDs used, Use of ImageNet and Authors affiliated to a company.

The year of publication was the only factor hypothesis rejected by all of the three tests. Respon-
dents are associated to papers published more recently, however the difference is only in term of
months, and is mainly due to no response from a few old papers. There are no significant differences
between respondents and the population for which we had the email for the other seven variables
we have considered.
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Table A2: Summary Statistics for Response Analysis

Descriptive Statistics for Total Population of Papers

Statistic Year Number of Authors Citation Count Type Publications Int. Collaboration OLDs ImageNet Company Affil.

N 6060 6056 6060 6060 6060 6013 6060 5874
Ndist 14 22 266 2 2 8 2 2
Mean 2020.09 4.06 41.44 0.37 0.23 2.19 0.25 0.11
St. Dev. 1.78 1.95 1184.43 0.48 0.42 1.03 0.43 0.31
Min 2010 1 0 0 0 1 0 0
Pctl(25) 2019 3 0 0 0 1 0 0
Pctl(75) 2021 5 8 1 0 3 0 0
Max 2023 36 90038 1 1 8 1 1

Kolmogorov-Smirnov test for Total Population * Corresponding Email
D 0.11061 0.051373 0.0635 0.19911 0.023343 0.028154 0.00090898 0.0033341
P-value <2.2e-16 4.661e-05 1.666e-07 <2.2e-16 0.2207 0.08453 1 1

Descriptive Statistics for Papers with Corresponding Email Addresses
N 3033 3033 3033 3033 3033 2987 3033 2935
Ndist 14 21 131 2 2 8 2 2
Mean 2020.57 4.26 10.84 0.57 0.26 2.26 0.25 0.1
St. Dev. 1.59 2.12 54.59 0.5 0.44 1.05 0.43 0.31
Min 2010 1 0 0 0 1 0 0
Pctl(25) 2020 3 0 0 0 2 0 0
Pctl(75) 2022 5 6 1 1 3 0 0
Max 2023 36 1508 1 1 8 1 1

Kolmogorov-Smirnov test for Corresponding Email * Responded to Survey
D 0.15676 0.053131 0.056518 0.047216 0.021125 0.033868 0.045209 0.0074897
P-value 3.681e-06 0.4337 0.3569 0.5866 0.9998 0.9282 0.6419 1

Descriptive Statistics for Papers Whose Authors Responded to Survey
N 295 295 295 295 295 283 295 280
Ndist 8 12 43 2 2 7 2 2
Mean 2020.99 3.97 9.86 0.62 0.28 2.21 0.2 0.1
St. Dev. 1.42 1.86 51.95 0.49 0.45 1.08 0.4 0.3
Min 2016 1 0 0 0 1 0 0
Pctl(25) 2020 3 0 0 0 1 0 0
Pctl(75) 2022 5 6 1 1 3 0 0
Max 2023 12 816 1 1 7 1 1

Kolmogorov-Smirnov test for Total Population * Responded to Survey
D 0.25667 0.029133 0.11405 0.24632 0.044468 0.0085604 0.0443 0.010824
P-value <2.2e-16 0.9708 0.001327 2.998e-15 0.6342 1 0.6389 1

Notes: The tables above present descriptive statistics of variables for the population of papers analyzed in our study. These variables include publication year, number
of authors, citation count, journal publications (using journal publications from aggregation type as a benchmark of comparison), international collaboration, number
of datasets used, use of the Imagenet dataset and affiliation of authors. The table shows the number of observations (N), the number of unique values (Ndist), the
mean, standard deviation, minimum, maximum, and 25th and 75th percentiles for each variable. Table 1 provides statistics for the entire population, while Tables 2
and 3 present statistics for subsets of papers based on whether they had corresponding email addresses and whether their authors responded to our survey. At the
bottom of each table, we report the results of the Kolmogorov-Smirnov test, which assesses the distributional differences between the variables in different tables.
Specifically, we report the results of the KS test between Table 1 and Table 3, Table 1 and Table 2, and Table 2 and Table 3, to identify any significant differences in
the distribution of variables between the tables. These tables offer valuable insights into the characteristics of the papers in our sample and provide a foundation for
further analysis.
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When we compare respondents to the total population we see that journal articles are more
frequent compare to other outlets, this is due to the fact that email addresses are difficult to be
found in proceedings thus the email population was already biased in favour of journals. The
respondent sample includes also papers with fewer citations compared to the total population; the
bias was already present in the email population as the most highly cited articles are in category of
proceedings.
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Appendix B Dataset construction

In this Appendix, we report the procedure we followed to construct the dataset used in the econo-
metric analysis.

We obtained data on labeled datasets’ names, introduction dates, and associated tasks from
Papers With Code on July 17, 2023. We identified 358 datasets, including their names, full names,
and variants, which had at least one task overlapping with CIFAR-10 tasks. A list of CIFAR-10
and ImageNet tasks can be found in table B1. Missing introduction dates were filled automatically
by querying for the name of the introductory paper on Scopus or manually when the introductory
paper was unavailable. Additionally, we collected data on the number of papers indexed in Papers
With Code connected to each dataset.

We then queried the Scopus API using Pybliometrics with the following query structure for each
dataset name:

TITLE-ABS-KEY(“dataset”) AND PUBYEAR AFT intro-year.

This query identified papers published after the year of introduction, allowing for a two-year
margin to account for discrepancies between the first online appearance and official publication
dates. When the number of papers identified on Scopus using this query significantly exceeded19

the number of papers indexed on Papers With Code, we discarded the results. To refine the search for
datasets with short or general names like “BSD,” “Flowers,” or “APRICOT,” we appended “dataset”
and “database” to the dataset names, ensuring the results were specific to machine learning papers.
The query structure described above was executed on August 9, 2023. The following list of dataset
names was queried using the outlined steps and yielded at least one publication indexed on Scopus:

102 Category Flower Dataset, A Visible-infrared Paired Dataset for Low-light Vision, AFHQ, AFHQ Cat, AFHQV2,

AI2 Diagrams, AI2D, APRICOT dataset, ARC-100, ARID dataset, ASIRRA, Abnormal Event Detection Dataset,

AbstractReasoning, AdvNet, AmsterTime, AmsterTime: A Visual Place Recognition Benchmark Dataset for Se-

vere Domain Shift, Animal Faces-HQ, Animal Species Image Recognition for Restricting Access, ArtDL, BAM!,

BCI database, BCI dataset, BCN 20000, BCNB, BSD database, BSD dataset, BSDS300, BTAD, Bamboo dataset,

BarkNet 1.0, Behance Artistic Media, Bentham dataset, Bentham project, Berkeley Segmentation Dataset, BigEarth-

Net, Boombox, BraTS 2016, BreakHis database, BreakHis dataset, Breast Cancer Histopathological Database,

Breast Cancer Immunohistochemical Image Generation, CASIA-FASD, CCPD, CIFAR-10, CIFAR-10 Image Clas-

sification, CIFAR-10 image generation, CIFAR-100, CIFAR-100 vs CIFAR-10, CINIC-10, CIRCO, CIRR, CLEVR,

CLEVR-Dialog, COCO, COCO 2014, COCO 2015, COCO 2017, COCO minival, COCO panoptic, COCO test-

challenge, COCO test-dev, COCO+, COCO-Animals, COCO-CN, CORe50, COVID-19 Image Data Collection,

COWC, CUB, CUB Birds, CUB-200-2011, CUB-LT, CURE-OR, CalTech 101 Silhouettes, Caltech-101, Caltech-

256, Caltech-UCSD Birds-200-2011, Cars Overhead With Context, Cats and Dogs dataset, CelebA, CelebA-HQ,

CelebA-Test, CelebAMask-HQ, CelebFaces Attributes Dataset, Challenging Unreal and Real Environments for Object

19We considered double the number of papers indexed as the maximum threshold after preliminary tests.
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Recognition, Chaoyang dataset, ChestX-ray8, Chinese City Parking Dataset, ChineseFoodNet, Cityscapes, Cityscapes

test, Cityscapes val, Clothing1M, Cluttered Omniglot, Compose Image Retrieval on Real-life images, Compositional

Language and Elementary Visual Reasoning, DF20, DF20 - Mini, DFUC2021, DTD dataset, Danish Fungi 2020,

Deep PCB, Deep-Fashion, DeepFashion, DeepFashion2, DeepFish, DeepScores, DeepWeeds, Deepfashion2 validation,

DensePose, DensePose-COCO, Describable Textures Dataset, DiagSet, Digits database, Digits dataset, Dry Bean

Dataset, ELEVATER, EMNIST, EMNIST-Balanced, EMNIST-Digits, EMNIST-Letters, EgoHOS, EuroSAT, Euro-

pean Flood 2013 Dataset, Extended MNIST, Extended Yale B database, Extended Yale B dataset, Extended Yale-B,

FER2013 database, FER2013 dataset, FFHQ, FGVC Aircraft, FGVC-Aircraft, FRGC database, FRGC dataset, Face

Recognition Grand Challenge database, Face Recognition Grand Challenge dataset, FaceForensics++, Facial Expres-

sion Recognition 2013 Dataset, Fashion-Gen, Fashion-MNIST, Fishyscapes, Flickr database, Flickr dataset, Flickr-

Faces-HQ, Flickr30k, FlickrLogos-32, Flowers database, Flowers dataset, Flowers-102, Food-101, Food-101N, Freiburg

Groceries, Functional Map of the World, GOZ, GPR1200, Galaxy Zoo DECaLS, GasHisSDB, George Washington

database, George Washington dataset, Google Landmarks, Google Landmarks Dataset v2, Grocery Store dataset,

HR-ShanghaiTech, Hotels-50K, Hyper-Kvasir Dataset, IAM Handwriting, IAM database, IAM dataset, IAPR TC-

12, IAPR TC-12 Benchmark, IARPA Janus Benchmark-B, IARPA Janus Benchmark-C, ICFG-PEDES, ICubWorld,

IJB-B, IJB-C, ILSVRC 2015, ILSVRC 2016, INSTRE, IRMA database, IRMA dataset, ISBNet, Image Retrieval

from Contextual Descriptions, ImageCoDe, ImageNet, ImageNet Detection, ImageNet-10, ImageNet-100, ImageNet-

32, ImageNet-9, ImageNet-A, ImageNet-C, ImageNet-Caltech, ImageNet-LT, ImageNet-O, ImageNet-R, ImageNet-

Sketch, ImageNet32, ImageNet64x64, Imagenette, In-Shop, InLoc, Incidents database, Incidents dataset, InstaCi-

ties1M, JFT-300M, JFT-3B, JHU CoSTAR Block Stacking Dataset, JHU-CROWD, JHU-CROWD++, Kannada-

MNIST, Kitchen Scenes, Konzil, Kuzushiji-49, Kuzushiji-MNIST, Kvasir-Capsule, LFW database, LFW dataset,

LHQ, LIDC-IDRI database, LIDC-IDRI dataset, LLVIP, LSUN, LSUN Bedroom, LaSCo, LabelMe, Labeled Faces

in the Wild, Large-scale Scene UNderstanding Challenge, Lemons quality control dataset, Letter Recognition Data

Set, Letter database, Letter dataset, Localized Narratives, Logo-2K+, MAMe, MIAD, MINC dataset, MLRSNet,

MNIST, MNIST Large Scale dataset, MNIST-8M, MNIST-full, MNIST-test, MS-COCO, MSCOCO, MSRA Hand,

MUAD, MVTEC ANOMALY DETECTION DATASET, MVTec AD, MVTec D2S, MVTecAD, Materials in Con-

text Database, Melodic Design, Meta-Dataset, Microsoft Common Objects in Context, Million-AID, Moving MNIST,

MuMiN, Multi-Modal CelebA-HQ, MultiMNIST, N-Caltech 101, NAS-Bench-201, NCT-CRC-HE-100K, NUS-WIDE,

New Plant Diseases Dataset, Notre-Dame Cathedral Fire, NumtaDB, OFDIW, OMNIGLOT, ObjectNet, OmniBench-

mark, Omniglot, OnFocus Detection In the Wild, Open Images V4, Open MIC, Open Museum Identification Chal-

lenge, Optical Recognition of Handwritten Digits, Oxford 102 Flower, Oxford 102 Flowers, Oxford Buildings, Oxford-

IIIT Pet Dataset, Oxford105k, Oxford5k, PASCAL VOC 2007 database, PASCAL VOC 2007 dataset, PASCAL VOC

2011, PASCAL VOC 2011 test, PASCAL VOC 2012 database, PASCAL VOC 2012 dataset, PASCAL VOC 2012

test, PASCAL VOC 2012 val, PASCAL VOC database, PASCAL VOC dataset, PASCAL Visual Object Classes

Challenge, PCam, PGM dataset, PKU-Reid, PROMISE12, Pano3D, PatchCamelyon, Patzig, Perceptual Similar-

ity, PhotoChat, Places database, Places dataset, Places-LT, Places2, Places205, Places365, Places365-Standard,

PlantVillage database, Procedurally Generated Matrices (PGM), Processed Twitter, QMNIST, Quick, Draw! Dataset,

QuickDraw-Extended, RESISC45 database, RESISC45 dataset, RF100, RIT-18, RPC database, RPC dataset, RVL-

CDIP, Recipe1M, Recipe1M+, Replica dataset, Retail Product Checkout, Ricordi, Riseholme-2021, Road Anomaly,
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Rotated MNIST, Rotating MNIST, SI-Score, STAIR Captions, STL-10, STN PLAD, STN Power Line Assets Dataset,

SUN Attribute, SUN397, SVHN, SVLD, Saint Gall, Schiller dataset, Schwerin, Self-Taught Learning 10, Semi-

Supervised iNaturalist, Semi-iNat, Sequential MNIST, Sewer-ML, ShanghaiTech, ShanghaiTech A, ShanghaiTech B,

Shiller, ShoeV2, Silhouettes database, Silhouettes dataset, SketchHairSalon, SketchyScene, So2Sat LCZ42, Spot-the-

diff, Stanford Cars, Stanford Dogs, Stanford Online Products, Street View House Numbers, StreetStyle, Structured3D,

StyleGAN-Human, Stylized ImageNet, TMED, TUM-GAID, Tencent ML-Images, Thyroid Disease database, Thy-

roid Disease dataset, Thyroid database, Thyroid dataset, Tiny ImageNet, Tiny Images, Tiny-ImageNet, TransNAS-

Bench-101, Tsinghua Dogs, Twitter100k, UBI-Fights, UCF-CC-50, UCSD Anomaly Detection Dataset, UCSD Ped2,

UCSD-MIT Human Motion, UFPR-AMR, UMIST, UMist, UPIQ, USPS database, USPS dataset, Unified Photo-

metric Image Quality, VOC12, VegFru, VehicleX, Verse dataset, Visual Madlibs, Visual Wake Words, VocalFolds,

WHU-Hi, WIT dataset, Washington RGB-D, WebVision, WebVision-1000, Wikipedia-based Image Text, Wine Data

Set, Wine database, Wine dataset, Wuhan UAV-borne hyperspectral image, YFCC100M, beanTech Anomaly Detec-

tion, cats vs dogs, ciFAIR-10, cifar10, cifar100, fMoW, fashion mnist, food101, iCartoonFace, iNat2021, iNaturalist,

iNaturalist 2018, iNaturalist 2019, iSUN, imagenet-1k, mini-ImageNet-LT, smallNORB, tieredImageNet, xBD.

From the original list of 358 unique labeled datasets, we managed to identify on Scopus 37,242
papers citing 264 unique labeled datasets. The discrepancy is due to some datasets not being
identified precisely enough using the described steps, i.e. having too many results even after adding
the words “dataset” and “database” in the query, or having no results at all. The labeled datasets
we could not find were either not indexed by Scopus or did not mention the datasets in the title,
abstract, or keywords. We then merged this information with Papers With Code’s annotated
datasets information to obtain the complete sample with all the necessary data.
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Table B1: Tasks performed using CIFAR-10 and ImageNet

CIFAR-10 ImageNet

Image Classification Image Classification
Image Generation Image Generation
Semi-Supervised Image Classification Semi-Supervised Image Classification
Image Clustering Image Clustering
Long-tail Learning Long-tail Learning
Neural Architecture Search Neural Architecture Search
Density Estimation Density Estimation
Binarization Binarization
Stochastic Optimization Stochastic Optimization
Quantization Quantization
Small Data Image Classification Small Data Image Classification
Image Compression Image Compression
Conditional Image Generation Conditional Image Generation
Adversarial Defense Adversarial Defense
Object Recognition Object Recognition
Unsupervised Image Classification Unsupervised Image Classification
Adversarial Robustness Adversarial Robustness
Network Pruning Network Pruning
Classification with Binary Weight Network Classification with Binary Weight Network
Data Augmentation Data Augmentation
Robust classification Robust classification
Classification with Binary Neural Network Classification with Binary Neural Network
Open-World Semi-Supervised Learning Open-World Semi-Supervised Learning
Neural Network Compression Neural Network Compression
Anomaly Detection Biologically-plausible Training
Graph Classification CW Attack Detection
Image Retrieval Classification
Out-of-Distribution Detection Classification Consistency
Learning with noisy labels Color Image Denoising
Image Classification with Label Noise Continual Learning
Semi-Supervised Image Classification (Cold Start) Contrastive Learning
Personalized Federated Learning Data Free Quantization
Unsupervised Anomaly Detection with Specified Settings – 30% anomaly Domain Generalization
Unsupervised Anomaly Detection with Specified Settings – 20% anomaly Few-Shot Image Classification
Unsupervised Anomaly Detection with Specified Settings – 1% anomaly Few-Shot Learning
Unsupervised Anomaly Detection with Specified Settings – 0.1% anomaly Generalized Zero-Shot Learning
Unsupervised Anomaly Detection with Specified Settings – 10% anomaly Image Classification with Differential Privacy
Adversarial Attack Image Colorization
Sequential Image Classification Image Compressed Sensing
Model Poisoning Image Deblurring
Sparse Learning and binarization Image Inpainting
Novel Class Discovery Image Recognition
Hard-label Attack Image Super-Resolution
Clean-label Backdoor Attack (0.05%) Incremental Learning
Nature-Inspired Optimization Algorithm JPEG Decompression
Long-tail Learning on CIFAR-10-LT (ρ=100) Knowledge Distillation

Linear-Probe Classification
Model Compression
Object Detection
Parameter Prediction
Partial Domain Adaptation
Prompt Engineering
Self-Supervised Image Classification
Sparse Learning
Unconditional Image Generation
Unsupervised Domain Adaptation
Variational Inference
Video Matting
Video Visual Relation Detection
Weakly Supervised Object Detection
Weakly-Supervised Object Localization
Zero-Shot Learning
Zero-Shot Object Detection
Zero-Shot Transfer Image Classification

Notes: This table lists all the tasks associated with CIFAR-10 and ImageNet, the two most commonly
used labeled datasets in Papers With Code. Data collected on July 17, 2023, and compiled by the
authors.
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Appendix C Additional descriptives

Table C1 reports the main characteristics of 15 selected labeled datasets in our sample, including
their names, supporting institutions, introduction years, number of categories, and instance counts.

Additionally, we constructed Table 1 using estimates from Shermatov (2024) to provide com-
putational requirements for running state-of-the-art (SOTA) models on the four most commonly
used open labeled datasets (OLDs) in the literature: ImageNet, COCO, MNIST, and CIFAR-
10. These estimates were derived from Epoch AI’s methods for assessing the training compute
of deep learning systems, including operation counts, GPU time, and performing calculations
based on SOTA data compiled by the Papers with Code platform. More details can be found
at https://epochai.org/blog/estimating-training-compute.

These calculations are intended for illustrative and comparative purposes only. Computing power
requirements can differ significantly across datasets and architectures. We provide rough estimates
by comparing the compute demands of leading models with the compute capabilities of different
hardware. We present estimates for hardwares with two levels of performance: supercomputers and
research laptops. For supercomputers, we use the Frontier exascale machine, which delivers 1194
PFlop/s, as a benchmark. For research laptops, we reference average devices with NVIDIA GeForce
RTX 4080 or AMD Radeon RX 7900 XTX GPUs, which provide roughly 5x less flops/s. Actual
flops allocated for deep learning tasks can vary greatly depending on the specific model and its
configuration.

For example, the top CIFAR-10 model by Google Research Brain Team, ViT-H/14, requires a
substantial amount of flops to achieve 99.5% accuracy. A simpler model, “airbench”, requires 3.6
times fewer flops to achieve human-level accuracy of 94% (Jordan, 2024). On an average researcher
laptop, training this model on CIFAR-10 would take approximately 10 seconds to achieve 94%
accuracy.
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Table C1: Open Labeled Datasets Characteristics

Dataset Full Name Created by Introduced
Year

Categories Instances

ImageNet ImageNet Large Scale Vi-
sual Recognition Chal-
lenge

Princeton Univer-
sity

2009 21,841 14,197,122

MNIST Modified National Insti-
tute of Standards and
Technology

AT&T Bell Labora-
tories

1998 10 70,000

COCO Common Objects in Con-
text

Microsoft 2014 80 330,000

CIFAR-10 Canadian Institute for
Advanced Research 10

University of
Toronto

2009 10 60,000

PASCAL VOC Pattern Analysis, Statisti-
cal Modelling and Compu-
tational Learning - Visual
Object Classes Challenge

University of Ox-
ford

2005 20 27,450

CIFAR-100 Canadian Institute for
Advanced Research 100

University of
Toronto

2009 100 60,000

CUB-200-2011 Caltech-UCSD Birds-200-
2011

California Institute
of Technology

2011 200 11,788

BSD Berkeley Segmentation
Dataset

Berkeley Vision
and Learning Cen-
ter

2003 1 500

SVHN Street View House Num-
bers

Stanford University 2011 10 604,388

CelebA Celebrities Attributes
Dataset

Chinese University
of Hong Kong

2014 10,177 202,599

FRGC Facial Recognition Grand
Challenge

National Institute
of Standards and
Technology

2006 1 50,000

Extended Yale B Extended Yale Face
Database B

Yale University 2001 38 2,414

Fashion-MNIST Dataset for benchmark-
ing machine learning algo-
rithms

Zalando Research 2017 10 70,000

Flickr30k Flickr 30k Dataset University of Illi-
nois

2014 1 31,783

Cityscapes dataset Dataset for urban scene
understanding and au-
tonomous driving

Daimler AG and
University of
Tübingen

2016 30 5,000

Notes: This table provides information on 15 datasets from our sample, including their names, supporting institutions,
introduction years, number of categories, and instance counts. Elaborated by the authors.
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Appendix D Robustness checks and sensitivity analysis

In this Appendix we report the robustness checks and sensitivity analysis we run and discussed in
the Section 5.3 of this article.

Table D1: Robustness Check: Negative Binomial

Patent Citations Scientific Citations
Full 2010-2014 2015-2022 Full 2010-2014 2015-2022

Model: (1) (2) (3) (4) (5) (6)

CIFAR-10 (only) 0.357∗ 1.491∗ 0.292† 0.013 0.606† 0.013
(0.153) (0.596) (0.161) (0.069) (0.352) (0.074)

CIFAR-10 (others) -0.048 0.459 -0.039 -0.168† 1.353∗ -0.175∗

(0.142) (0.550) (0.138) (0.097) (0.672) (0.084)
ImageNet 0.168∗ 0.598† 0.084 0.426∗∗∗ 0.403 0.440∗∗∗

(0.083) (0.316) (0.089) (0.052) (0.313) (0.054)
log(Nb. Authors) 0.536∗∗∗ 0.031 0.639∗∗∗ 0.344∗∗∗ -0.205∗ 0.395∗∗∗

(0.079) (0.167) (0.084) (0.040) (0.100) (0.041)
log(Nb. References) 0.603∗∗∗ 1.601∗∗∗ 0.502∗∗∗ 0.947∗∗∗ 1.023∗∗∗ 0.958∗∗∗

(0.095) (0.235) (0.099) (0.110) (0.128) (0.114)
International Collab. 0.046 0.333† 0.002 0.416∗∗∗ 0.288∗∗ 0.416∗∗∗

(0.068) (0.192) (0.079) (0.047) (0.101) (0.047)
Share Company Affil. 0.920∗∗∗ 2.329∗∗∗ 0.783∗∗∗ 1.226∗∗∗ 0.931∗ 1.224∗∗∗

(0.156) (0.565) (0.158) (0.148) (0.454) (0.143)
Nb. Datasets 0.031 -0.109 0.047 -0.003 0.102 0.009

(0.067) (0.149) (0.068) (0.038) (0.199) (0.036)
Nb. Tasks 0.006∗∗∗ 0.005 0.006∗∗∗ 0.003∗∗∗ 0.005∗ 0.002∗∗∗

(0.001) (0.004) (0.001) (0.001) (0.003) (0.001)
Nb. Modalities 0.159∗ -0.207 0.198∗∗ 0.218∗∗∗ 0.258∗ 0.226∗∗∗

(0.069) (0.318) (0.070) (0.040) (0.124) (0.042)

Observations 28,393 1,734 26,659 28,393 1,734 26,659
Dependent variable mean 0.15676 0.51096 0.13373 16.365 39.354 14.870
Pseudo R2 0.15171 0.10799 0.15478 0.10241 0.04174 0.10559
Over-dispersion 0.17058 0.18649 0.18141 0.50494 0.56484 0.50624

Notes: This table reports estimates of regressions of the model described in equation 2. The dependent variable
for columns (1)-(3) is the total number of patent families citing the focal papers, while for columns (4)-(6) it is the
total number of scientific citations received by the focal papers. The response variables are indicator variables that
are equal to one if a paper mentions only CIFAR-10, CIFAR-10 among other datasets or ImageNet in the title,
abstract or keywords. Columns (1) and (4) reports our baseline results of the estimates stemming from a Poisson
regression. Column (2)-(3) and (5)-(6) reports estimates of the same equation in a subset of the sample comprised
of papers published from 2010 to 2014 and those published from 2015 to 2022, respectively. Exponentiating the
coefficients and differencing from one yields numbers interpretable as elasticities. All the specifications include
publication venue type, publication year and scientific field fixed effects. Standard errors are clustered at the
journal/conference level. Significance levels: †p<0.1; * p<0.05; ** p<0.01; *** p<0.001.
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Table D2: Robustness Check: Restricted Sample - Patent Citations

Patents Citations
Full 2010-2014 2015-2022 Full 2010-2014 2015-2022

Model: (1) (2) (3) (4) (5) (6)

CIFAR-10 (only) 0.769∗∗∗ 1.305∗∗ 0.621∗∗ 0.876∗∗∗ 1.883∗∗∗ 0.668∗∗

(0.181) (0.421) (0.209) (0.199) (0.500) (0.215)
CIFAR-10 (others) 0.049 0.184 0.073 0.189 1.029† 0.138

(0.216) (0.368) (0.192) (0.227) (0.543) (0.197)
ImageNet 0.338∗ 1.170∗∗ 0.167

(0.140) (0.411) (0.122)
log(Nb. Authors) 0.500∗∗∗ 0.437∗ 0.608∗∗∗ 0.492∗∗∗ 0.421∗ 0.605∗∗∗

(0.101) (0.186) (0.118) (0.101) (0.200) (0.118)
log(Nb. References) 0.509∗∗ 1.536∗∗∗ 0.347∗ 0.453∗∗ 1.267∗∗∗ 0.321†

(0.173) (0.310) (0.173) (0.158) (0.199) (0.167)
International Collab. -0.015 0.050 -0.032 -0.030 -0.111 -0.037

(0.102) (0.419) (0.105) (0.103) (0.460) (0.104)
Share Company Affil. 1.425∗∗∗ 3.533∗∗∗ 1.111∗∗∗ 1.360∗∗∗ 3.017∗∗∗ 1.082∗∗∗

(0.244) (0.288) (0.184) (0.235) (0.308) (0.181)
Nb. Datasets -0.170 -0.124 -0.077 -0.170 -0.297 -0.074

(0.106) (0.193) (0.099) (0.106) (0.205) (0.099)
Nb. Tasks 0.021∗∗∗ 0.036∗∗∗ 0.015∗∗∗ 0.018∗∗∗ 0.030∗∗∗ 0.014∗∗∗

(0.003) (0.007) (0.004) (0.003) (0.009) (0.004)
Nb. Modalities -0.080 0.190 -0.038 0.205

(0.179) (0.164) (0.173) (0.164)

Pub. Venue Type Fixed Effect YES YES YES YES YES YES
Subject Area Fixed Effect YES YES YES YES YES YES
Publication Year Fixed Effect YES YES YES YES YES YES

Observations 15,407 799 14,504 15,407 799 14,504
Dependent variable mean 0.17005 0.61452 0.14679 0.17005 0.61452 0.14679
Pseudo R2 0.29363 0.36343 0.28420 0.29624 0.39371 0.28484

Notes: This table reports estimates of regressions of the models described in equations 1 and 2 using a sample that
includes only conference proceedings and datasets with at least 100 papers indexed by Papers With Code and 5 or
more (10%) tasks overlapping with CIFAR-10. The dependent variable is the total number of patent families that
cited the focal paper. The response variables are indicator variables that are equal to one if a paper mentions only
CIFAR-10, CIFAR-10 among other datasets or ImageNet in the title, abstract or keywords. Columns (1) reports our
baseline results of the estimates stemming from a Poisson regression. Column (2) and (3) reports estimates of the same
equation in a subset of the sample comprised of papers published from 2010 to 2014 and those published from 2015
to 2022, respectively. Columns (4 - 5) report estimates when adding a dataset indicator variable also for papers using
ImageNet. Exponentiating the coefficients and differencing from one yields numbers interpretable as elasticities. All
the specifications include publication venue type, publication year and scientific field fixed effects. Standard errors are
clustered at the journal/conference level. Significance levels: †p<0.1; * p<0.05; ** p<0.01; *** p<0.001.
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Table D3: Robustness Check: Restricted Sample - Scientific Citations

Scientific Citations
Full 2010-2014 2015-2022 Full 2010-2014 2015-2022

Model: (1) (2) (3) (4) (5) (6)

CIFAR-10 (only) 0.217† 0.773∗ 0.157 0.418∗∗∗ 0.997∗∗∗ 0.368∗∗

(0.128) (0.305) (0.148) (0.119) (0.298) (0.134)
CIFAR-10 (others) -0.313 0.735 -0.357† -0.099 1.182† -0.142

(0.231) (0.454) (0.185) (0.236) (0.603) (0.185)
ImageNet 0.552∗∗∗ 0.624† 0.577∗∗∗

(0.073) (0.340) (0.074)
log(Nb. Authors) 0.336∗∗∗ 0.193 0.372∗∗∗ 0.319∗∗∗ 0.197 0.353∗∗∗

(0.087) (0.216) (0.093) (0.087) (0.217) (0.093)
log(Nb. References) 1.069∗∗∗ 0.994∗ 1.080∗∗∗ 0.992∗∗∗ 0.918∗ 1.001∗∗∗

(0.166) (0.408) (0.165) (0.157) (0.378) (0.158)
International Collab. 0.221∗∗∗ 0.096 0.244∗∗∗ 0.199∗∗∗ 0.009 0.229∗∗∗

(0.058) (0.278) (0.051) (0.058) (0.283) (0.052)
Share Company Affil. 1.271∗∗∗ 2.000∗∗∗ 1.268∗∗∗ 1.179∗∗∗ 1.754∗∗∗ 1.182∗∗∗

(0.128) (0.471) (0.117) (0.117) (0.471) (0.108)
Nb. Datasets -0.010 0.411 0.017 0.007 0.318 0.040

(0.126) (0.277) (0.110) (0.131) (0.318) (0.113)
Nb. Tasks 0.015∗∗∗ 0.021∗∗∗ 0.013∗∗ 0.009† 0.016∗ 0.007

(0.004) (0.005) (0.005) (0.005) (0.007) (0.005)
Nb. Modalities 0.235 0.310† 0.346∗ 0.425∗∗

(0.178) (0.165) (0.168) (0.158)

Pub. Venue Type Fixed Effect YES YES YES YES YES YES
Subject Area Fixed Effect YES YES YES YES YES YES
Publication Year Fixed Effect YES YES YES YES YES YES

Observations 15,600 895 14,703 15,600 895 14,703
Dependent variable mean 16.558 41.165 15.062 16.558 41.165 15.062
Pseudo R2 0.41044 0.30952 0.42224 0.42279 0.32472 0.43591

Notes: This table reports estimates of regressions of the models described in equations 1 and 2 using a sample that
includes only conference proceedings and datasets with at least 100 papers indexed by Papers With Code and 5 or
more (10%) tasks overlapping with CIFAR-10. The dependent variable is the total number scientific citations received
by a paper. The response variables are indicator variables that are equal to one if a paper mentions only CIFAR-10,
CIFAR-10 among other datasets or ImageNet in the title, abstract or keywords. Columns (1) reports our baseline
results of the estimates stemming from a Poisson regression. Column (2) and (3) reports estimates of the same
equation in a subset of the sample comprised of papers published from 2010 to 2014 and those published from 2015
to 2022, respectively. Columns (4 - 5) report estimates when adding a dataset indicator variable also for papers using
ImageNet. Exponentiating the coefficients and differencing from one yields numbers interpretable as elasticities. All
the specifications include publication venue type, publication year and scientific field fixed effects. Standard errors are
clustered at the journal/conference level. Significance levels: †p<0.1; * p<0.05; ** p<0.01; *** p<0.001.
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Table D4: Robustness Check: Enlarged Sample - Patent Citations

Patents Citations
Full 2010-2014 2015-2022 Full 2010-2014 2015-2022

Model: (1) (2) (3) (4) (5) (6)

CIFAR-10 (only) 0.412∗ 0.692∗∗ 0.359† 0.481∗∗ 1.089∗∗∗ 0.379†

(0.169) (0.214) (0.199) (0.179) (0.214) (0.206)
CIFAR-10 (others) -0.052 0.349 -0.012 0.034 0.952 0.014

(0.187) (0.426) (0.171) (0.202) (0.624) (0.181)
ImageNet 0.225∗ 0.958∗∗ 0.072

(0.104) (0.353) (0.104)
log(Nb. Authors) 0.514∗∗∗ -0.130 0.723∗∗∗ 0.508∗∗∗ -0.118 0.721∗∗∗

(0.105) (0.157) (0.113) (0.105) (0.154) (0.114)
log(Nb. References) 0.639∗∗∗ 1.745∗∗∗ 0.434∗∗ 0.620∗∗∗ 1.620∗∗∗ 0.428∗∗

(0.152) (0.157) (0.150) (0.148) (0.146) (0.149)
International Collab. 0.097 0.191 0.061 0.094 0.113 0.061

(0.079) (0.239) (0.092) (0.079) (0.272) (0.092)
Share Company Affil. 1.155∗∗∗ 2.509∗∗∗ 0.971∗∗∗ 1.125∗∗∗ 2.188∗∗∗ 0.962∗∗∗

(0.198) (0.417) (0.147) (0.194) (0.430) (0.147)
Nb. Datasets 0.019 0.160 0.051 0.012 0.180 0.049

(0.091) (0.121) (0.081) (0.090) (0.135) (0.081)
Nb. Tasks 0.008∗∗∗ 0.010∗∗ 0.006∗∗∗ 0.006∗∗∗ 0.002 0.006∗∗

(0.002) (0.004) (0.002) (0.002) (0.004) (0.002)
Nb. Modalities 0.089 -0.646† 0.181∗ 0.142† -0.507 0.197∗

(0.070) (0.381) (0.077) (0.078) (0.396) (0.085)

Pub. Venue Type Fixed Effect YES YES YES YES YES YES
Subject Area Fixed Effect YES YES YES YES YES YES
Publication Year Fixed Effect YES YES YES YES YES YES

Observations 28,433 1,658 26,705 28,433 1,658 26,705
Dependent variable mean 0.15855 0.54403 0.13503 0.15855 0.54403 0.13503
Pseudo R2 0.26884 0.25634 0.26651 0.26965 0.27031 0.26660

Notes: This table reports estimates of regressions of the models described in equations 1 and 2 using an enlarged
sample that encompasses all kinds of publication outlets. The dependent variable is the total number of patent families
that cited the focal paper. The response variables are indicator variables that are equal to one if a paper mentions
only CIFAR-10, CIFAR-10 among other datasets or ImageNet in the title, abstract or keywords. Columns (1) reports
our baseline results of the estimates stemming from a Poisson regression. Column (2) and (3) reports estimates of the
same equation in a subset of the sample comprised of papers published from 2010 to 2014 and those published from
2015 to 2022, respectively. Columns (4 - 5) report estimates when adding a dataset indicator variable also for papers
using ImageNet. Exponentiating the coefficients and differencing from one yields numbers interpretable as elasticities.
All the specifications include publication venue type, publication year and scientific field fixed effects. Standard errors
are clustered at the journal/conference level. Significance levels: †p<0.1; * p<0.05; ** p<0.01; *** p<0.001.
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Table D5: Robustness Check: Enlarged Sample - Scientific Citations

Scientific Citations
Full 2010-2014 2015-2022 Full 2010-2014 2015-2022

Model: (1) (2) (3) (4) (5) (6)

CIFAR-10 (only) 0.192 1.250∗∗ 0.082 0.363∗ 1.416∗∗∗ 0.251†

(0.145) (0.397) (0.133) (0.150) (0.388) (0.136)
CIFAR-10 (others) -0.102 0.313 -0.107 0.045 0.550 0.038

(0.167) (0.425) (0.166) (0.188) (0.474) (0.183)
ImageNet 0.437∗∗∗ 0.530∗ 0.429∗∗∗

(0.100) (0.208) (0.109)
log(Nb. Authors) 0.419∗∗∗ 0.188 0.468∗∗∗ 0.401∗∗∗ 0.181 0.452∗∗∗

(0.057) (0.166) (0.062) (0.057) (0.160) (0.062)
log(Nb. References) 1.186∗∗∗ 1.337∗∗∗ 1.178∗∗∗ 1.164∗∗∗ 1.290∗∗∗ 1.157∗∗∗

(0.101) (0.180) (0.098) (0.102) (0.178) (0.100)
International Collab. 0.263∗∗∗ 0.367∗ 0.254∗∗∗ 0.256∗∗∗ 0.332† 0.250∗∗∗

(0.044) (0.166) (0.049) (0.046) (0.170) (0.052)
Share Company Affil. 1.313∗∗∗ 1.950∗∗ 1.297∗∗∗ 1.254∗∗∗ 1.711∗∗ 1.244∗∗∗

(0.137) (0.595) (0.146) (0.130) (0.607) (0.139)
Nb. Datasets 0.049 0.476∗∗ 0.037 0.048 0.442∗∗ 0.038

(0.048) (0.148) (0.040) (0.047) (0.160) (0.039)
Nb. Tasks 0.007∗∗∗ 0.009∗∗∗ 0.006∗∗∗ 0.003∗∗ 0.005 0.002†

(0.001) (0.003) (0.001) (0.001) (0.003) (0.001)
Nb. Modalities 0.136∗ -0.022 0.154∗∗ 0.254∗∗∗ 0.039 0.272∗∗∗

(0.059) (0.182) (0.059) (0.059) (0.179) (0.058)

Pub. Venue Type Fixed Effect YES YES YES YES YES YES
Subject Area Fixed Effect YES YES YES YES YES YES
Publication Year Fixed Effect YES YES YES YES YES YES

Observations 33,693 2,062 31,630 33,693 2,062 31,630
Dependent variable mean 18.511 45.833 16.731 18.511 45.833 16.731
Pseudo R2 0.43621 0.33513 0.44532 0.44171 0.34236 0.45083

Notes: This table reports estimates of regressions of the models described in equations 1 and 2 using an enlarged
sample that encompasses all types of publication outlets and papers missing patent citation information. The dependent
variable is the total number of scientific publications that cited the focal paper. The response variables are indicator
variables that are equal to one if a paper mentions only CIFAR-10, CIFAR-10 among other datasets or ImageNet in
the title, abstract or keywords. Columns (1) reports our baseline results of the estimates stemming from a Poisson
regression. Column (2) and (3) reports estimates of the same equation in a subset of the sample comprised of papers
published from 2010 to 2014 and those published from 2015 to 2022, respectively. Columns (4 - 5) report estimates when
adding a dataset indicator variable also for papers using ImageNet. Exponentiating the coefficients and differencing
from one yields numbers interpretable as elasticities. All the specifications include publication venue type, publication
year and scientific field fixed effects. Standard errors are clustered at the journal/conference level. Significance levels:
†p<0.1; * p<0.05; ** p<0.01; *** p<0.001.
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Table D6: Robustness Check: Alternative Datasets Indicator Variables - Patent Citations

Patents Citations
Full 2010-2014 2015-2022 Full 2010-2014 2015-2022

Model: (1) (2) (3) (4) (5) (6)

CIFAR-10 0.126 0.491∗ 0.131 0.207 1.011∗∗ 0.156
(0.143) (0.226) (0.146) (0.158) (0.336) (0.158)

ImageNet 0.228∗ 0.963∗∗ 0.073
(0.103) (0.342) (0.105)

log(Nb. Authors) 0.483∗∗∗ -0.105 0.686∗∗∗ 0.477∗∗∗ -0.092 0.684∗∗∗

(0.099) (0.156) (0.109) (0.100) (0.152) (0.109)
log(Nb. References) 0.674∗∗∗ 1.756∗∗∗ 0.472∗∗ 0.655∗∗∗ 1.623∗∗∗ 0.465∗∗

(0.149) (0.159) (0.147) (0.145) (0.151) (0.146)
International Collab. 0.084 0.189 0.046 0.081 0.111 0.046

(0.079) (0.236) (0.093) (0.079) (0.268) (0.093)
Share Company Affil. 1.154∗∗∗ 2.516∗∗∗ 0.971∗∗∗ 1.123∗∗∗ 2.196∗∗∗ 0.961∗∗∗

(0.197) (0.418) (0.144) (0.193) (0.426) (0.145)
Nb. Datasets -0.046 0.132 -0.005 -0.051 0.170 -0.006

(0.082) (0.098) (0.076) (0.082) (0.108) (0.076)
Nb. Tasks 0.008∗∗∗ 0.010∗ 0.007∗∗∗ 0.006∗∗∗ 0.002 0.006∗∗

(0.002) (0.004) (0.002) (0.002) (0.004) (0.002)
Nb. Modalities 0.102 -0.600 0.191∗ 0.155∗ -0.478 0.208∗

(0.070) (0.392) (0.076) (0.078) (0.406) (0.084)

Pub. Venue Type Fixed Effect YES YES YES YES YES YES
Subject Area Fixed Effect YES YES YES YES YES YES
Publication Year Fixed Effect YES YES YES YES YES YES

Observations 27,905 1,620 26,220 27,905 1,620 26,220
Dependent variable mean 0.15951 0.54691 0.13596 0.15951 0.54691 0.13596
Pseudo R2 0.26509 0.25357 0.26186 0.26593 0.26791 0.26195

Notes: This table reports estimates of regressions of the models described in equations 1 and 2. The dependent variable
is the total number of patent families that cited the focal paper. The response variables are indicator variables that
are equal to one if a paper mentions CIFAR-10 or ImageNet in the title, abstract or keywords. Columns (1) reports
our baseline results of the estimates stemming from a Poisson regression. Column (2) and (3) reports estimates of the
same equation in a subset of the sample comprised of papers published from 2010 to 2014 and those published from
2015 to 2022, respectively. Columns (4 - 5) report estimates when adding a dataset indicator variable also for papers
using ImageNet. Exponentiating the coefficients and differencing from one yields numbers interpretable as elasticities.
All the specifications include publication venue type, publication year and scientific field fixed effects. Standard errors
are clustered at the journal/conference level. Significance levels: †p<0.1; * p<0.05; ** p<0.01; *** p<0.001.

55



Table D7: Robustness Check: Alternative Datasets Indicator Variables - Scientific Citations

Scientific Citations
Full 2010-2014 2015-2022 Full 2010-2014 2015-2022

Model: (1) (2) (3) (4) (5) (6)

CIFAR-10 -0.212 0.891∗ -0.255† -0.074 1.177∗ -0.117
(0.153) (0.392) (0.133) (0.174) (0.468) (0.154)

ImageNet 0.386∗∗∗ 0.575∗ 0.384∗∗∗

(0.092) (0.274) (0.093)
log(Nb. Authors) 0.352∗∗∗ -0.125 0.440∗∗∗ 0.342∗∗∗ -0.122 0.429∗∗∗

(0.073) (0.181) (0.077) (0.072) (0.181) (0.076)
log(Nb. References) 1.202∗∗∗ 1.362∗∗∗ 1.180∗∗∗ 1.180∗∗∗ 1.320∗∗∗ 1.157∗∗∗

(0.135) (0.261) (0.136) (0.138) (0.253) (0.140)
International Collab. 0.322∗∗∗ 0.339∗ 0.320∗∗∗ 0.319∗∗∗ 0.301† 0.320∗∗∗

(0.040) (0.172) (0.038) (0.042) (0.178) (0.039)
Share Company Affil. 1.275∗∗∗ 1.262∗∗ 1.289∗∗∗ 1.227∗∗∗ 1.082∗ 1.244∗∗∗

(0.150) (0.480) (0.154) (0.144) (0.464) (0.150)
Nb. Datasets 0.012 0.377∗∗ 0.015 0.005 0.371∗∗ 0.008

(0.056) (0.119) (0.047) (0.056) (0.140) (0.047)
Nb. Tasks 0.007∗∗∗ 0.007∗∗ 0.007∗∗∗ 0.004∗∗∗ 0.003 0.004∗∗

(0.001) (0.003) (0.001) (0.001) (0.003) (0.001)
Nb. Modalities 0.192∗∗∗ 0.216 0.199∗∗∗ 0.294∗∗∗ 0.282 0.303∗∗∗

(0.045) (0.189) (0.047) (0.047) (0.194) (0.048)

Pub. Venue Type Fixed Effect YES YES YES YES YES YES
Subject Area Fixed Effect YES YES YES YES YES YES
Publication Year Fixed Effect YES YES YES YES YES YES

Observations 28,393 1,734 26,659 28,393 1,734 26,659
Dependent variable mean 16.365 39.354 14.870 16.365 39.354 14.870
Pseudo R2 0.41067 0.27869 0.42113 0.41498 0.28699 0.42552

Notes: This table reports estimates of regressions of the models described in equations 1 and 2. The dependent
variable is the total number scientific citations received by a paper. The response variables are indicator variables that
are equal to one if a paper mentions CIFAR-10 or ImageNet in the title, abstract or keywords. Columns (1) reports
our baseline results of the estimates stemming from a Poisson regression. Column (2) and (3) reports estimates of the
same equation in a subset of the sample comprised of papers published from 2010 to 2014 and those published from
2015 to 2022, respectively. Columns (4 - 5) report estimates when adding a dataset indicator variable also for papers
using ImageNet. Exponentiating the coefficients and differencing from one yields numbers interpretable as elasticities.
All the specifications include publication venue type, publication year and scientific field fixed effects. Standard errors
are clustered at the journal/conference level. Significance levels: †p<0.1; * p<0.05; ** p<0.01; *** p<0.001.

56



Table D8: Robustness Check: Labeled Datasets and Patent Citations - 3-Years Window

Patents Citations - 3 Years Window
Full 2010-2014 2015-2022 Full 2010-2014 2015-2022

Model: (1) (2) (3) (4) (5) (6)

CIFAR-10 (only) 0.431∗ 0.530∗ 0.409† 0.494∗ 0.894∗∗∗ 0.432†

(0.188) (0.232) (0.215) (0.196) (0.218) (0.224)
CIFAR-10 (others) -0.078 -1.519∗ 0.053 0.005 -0.982 0.084

(0.209) (0.652) (0.200) (0.222) (0.761) (0.210)
ImageNet 0.216∗ 0.867∗∗ 0.081

(0.107) (0.326) (0.119)
log(Nb. Authors) 0.530∗∗∗ 0.082 0.684∗∗∗ 0.523∗∗∗ 0.091 0.681∗∗∗

(0.103) (0.246) (0.121) (0.104) (0.243) (0.121)
log(Nb. References) 0.684∗∗∗ 1.831∗∗∗ 0.513∗∗ 0.665∗∗∗ 1.716∗∗∗ 0.506∗∗

(0.181) (0.188) (0.186) (0.177) (0.180) (0.185)
International Collab. 0.119 0.262 0.075 0.117 0.204 0.075

(0.090) (0.234) (0.108) (0.090) (0.262) (0.108)
Share Company Affil. 1.294∗∗∗ 2.944∗∗∗ 1.101∗∗∗ 1.264∗∗∗ 2.658∗∗∗ 1.091∗∗∗

(0.191) (0.510) (0.171) (0.188) (0.535) (0.171)
Nb. Datasets 0.034 0.368∗∗ 0.027 0.029 0.389∗∗ 0.025

(0.105) (0.126) (0.103) (0.104) (0.133) (0.103)
Nb. Tasks 0.008∗∗∗ 0.010∗∗∗ 0.007∗∗∗ 0.006∗∗ 0.002 0.006∗∗

(0.002) (0.003) (0.002) (0.002) (0.004) (0.002)
Nb. Modalities 0.064 -0.592 0.160† 0.113 -0.483 0.178†

(0.083) (0.393) (0.091) (0.089) (0.396) (0.098)

Pub. Venue Type Fixed Effect YES YES YES YES YES YES
Subject Area Fixed Effect YES YES YES YES YES YES
Publication Year Fixed Effect YES YES YES YES YES YES

Observations 10,114 1,579 8,429 10,114 1,579 8,429
Dependent variable mean 0.31016 0.32552 0.31119 0.31016 0.32552 0.31119
Pseudo R2 0.13808 0.26681 0.13424 0.13902 0.27749 0.13437

Notes: This table reports estimates of regressions of the models described in equations 1 and 2. The dependent variable
is the total number of patent citations received by a paper within 3 years of the publication year. The response variables
are indicator variables that are equal to one if a paper mentions only CIFAR-10, CIFAR-10 among other datasets or
ImageNet in the title, abstract or keywords. Columns (1) reports our baseline results of the estimates stemming from
a Poisson regression. Column (2) and (3) reports estimates of the same equation in a subset of the sample comprised
of papers published from 2010 to 2014 and those published from 2015 to 2019, respectively. Columns (4 - 5) report
estimates when adding a dataset indicator variable also for papers using ImageNet. Exponentiating the coefficients
and differencing from one yields numbers interpretable as elasticities. All the specifications include publication venue
type, publication year and scientific field fixed effects. Standard errors are clustered at the journal/conference level.
Significance levels: †p<0.1; * p<0.05; ** p<0.01; *** p<0.001.
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Table D9: Robustness Check: Labeled Datasets and Scientific Citations - 3-Years Window

Scientific Citations - 3 Years Window
Full 2010-2014 2015-2022 Full 2010-2014 2015-2022

Model: (1) (2) (3) (4) (5) (6)

CIFAR-10 (only) 0.084 0.800∗∗∗ 0.063 0.217∗ 0.960∗∗∗ 0.196∗

(0.096) (0.235) (0.093) (0.088) (0.230) (0.090)
CIFAR-10 (others) -0.388∗ -0.284 -0.367∗ -0.249 -0.034 -0.227

(0.174) (0.452) (0.170) (0.211) (0.483) (0.205)
ImageNet 0.393∗∗∗ 0.473∗∗ 0.391∗∗∗

(0.102) (0.180) (0.102)
log(Nb. Authors) 0.465∗∗∗ -0.039 0.517∗∗∗ 0.452∗∗∗ -0.038 0.503∗∗∗

(0.097) (0.108) (0.103) (0.097) (0.107) (0.104)
log(Nb. References) 1.315∗∗∗ 1.514∗∗∗ 1.297∗∗∗ 1.292∗∗∗ 1.483∗∗∗ 1.274∗∗∗

(0.132) (0.184) (0.134) (0.136) (0.185) (0.138)
International Collab. 0.308∗∗∗ 0.269∗∗ 0.311∗∗∗ 0.310∗∗∗ 0.245∗ 0.315∗∗∗

(0.041) (0.098) (0.047) (0.039) (0.103) (0.045)
Share Company Affil. 1.200∗∗∗ 1.365∗∗∗ 1.202∗∗∗ 1.149∗∗∗ 1.233∗∗∗ 1.152∗∗∗

(0.199) (0.373) (0.200) (0.190) (0.350) (0.191)
Nb. Datasets 0.089∗ 0.533∗∗∗ 0.072† 0.083† 0.532∗∗∗ 0.067

(0.044) (0.092) (0.043) (0.043) (0.099) (0.043)
Nb. Tasks 0.006∗∗∗ 0.002 0.006∗∗∗ 0.002∗ -0.002 0.003∗

(0.001) (0.002) (0.001) (0.001) (0.002) (0.001)
Nb. Modalities 0.194∗∗ 0.118 0.205∗∗∗ 0.294∗∗∗ 0.165 0.307∗∗∗

(0.060) (0.119) (0.061) (0.059) (0.120) (0.060)

Pub. Venue Type Fixed Effect YES YES YES YES YES YES
Subject Area Fixed Effect YES YES YES YES YES YES
Publication Year Fixed Effect YES YES YES YES YES YES

Observations 10,346 1,734 8,612 10,346 1,734 8,612
Dependent variable mean 21.480 11.685 23.452 21.480 11.685 23.452
Pseudo R2 0.33006 0.32315 0.32350 0.33576 0.32905 0.32935

Notes: This table reports estimates of regressions of the models described in equations 1 and 2. The dependent variable
is the total number of scientific citations received by a paper within 3 years of the publication year. The response vari-
ables are indicator variables that are equal to one if a paper mentions only CIFAR-10, CIFAR-10 among other datasets
or ImageNet in the title, abstract or keywords. Columns (1) reports our baseline results of the estimates stemming from
a Poisson regression. Column (2) and (3) reports estimates of the same equation in a subset of the sample comprised
of papers published from 2010 to 2014 and those published from 2015 to 2019, respectively. Columns (4 - 5) report
estimates when adding a dataset indicator variable also for papers using ImageNet. Exponentiating the coefficients
and differencing from one yields numbers interpretable as elasticities. All the specifications include publication venue
type, publication year and scientific field fixed effects. Standard errors are clustered at the journal/conference level.
Significance levels: †p<0.1; * p<0.05; ** p<0.01; *** p<0.001.
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